单摆式电涡流TMD装置优化设计与模型试验研究

汪志昊,郜辉,张新中,田文文

振动与冲击 ›› 2018, Vol. 37 ›› Issue (9) : 1-7.

PDF(1835 KB)
PDF(1835 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (9) : 1-7.
论文

单摆式电涡流TMD装置优化设计与模型试验研究

  • 汪志昊,郜辉,张新中,田文文
作者信息 +

Optimization design and model tests for a pendulum eddy-current tuned mass damper

  • WANG Zhihao, GAO Hui, ZHANG Xinzhong, TIAN Wenwen
Author information +
文章历史 +

摘要

为实现单摆式电涡流TMD整体构造与磁路优化设计,首先定性探讨了单摆式电涡流TMD装置整体构造,然后综合理论分析、模型试验与三维电磁场有限元仿真研究了TMD质量块与板式电涡流阻尼构件二者之间的磁场吸引力作用对TMD振动频率的影响程度,以及磁路布置对电涡流阻尼构件等效阻尼系数的影响规律。结果表明:板式电涡流阻尼构件宜整体安装在摆式TMD运动质量块的底面;磁场吸引力作用将增大摆式电涡流TMD的振动频率,TMD初步设计宜适当调整初始摆长以避免TMD失谐降低减振效果;三维电磁场有限元仿真可以很好地实现板式电涡流阻尼构件等效阻尼系数的精确定量计算与磁路最优设计,通过尽可能减小磁场间隙、适当加厚导磁钢板、优化铜板厚度等均可提升电涡流阻尼耗能效果。沿TMD运动方向,相邻永磁体磁极宜交错布置,通过有限元仿真确定最优间距;沿垂直于TMD运动方向,相邻永磁体磁极宜同向布置,且间距越小越好。

Abstract

To realize optimal design for structure and magnetic circuit of a pendulum tuned mass damper (PTMD) with eddy current damping, the overall structure of PTMD with a planar eddy-current damper (PECD) was studied qualitatively. The effects of magnetic field attractive force between PTMD and PECD on vibration frequency of PTMD, and those of magnetic circuit layout on equivalent damping coefficient of PECD were investigated using theoretical analysis, model tests and 3D electromagnetic field finite element simulation. The results showed that PECD should be installed at the bottom of the moving mass of PTMD, the magnetic field attractive force makes the vibration frequency of PTMD increase; the pendulum initial length of PTMD should be appropriately adjusted to avoid TMD detuning; the energy-dissipating effect of PECD is improved by reducing magnetic field gap, increasing steel plate thickness properly and optimizing copper plate thickness; along the moving direction of PTMD, adjacent permanent magnets’ magnetic poles need to be arranged in a staggered manner, their optimal interval is determined with FEM; while along the direction perpendicular to the moving direction of PTMD, adjacent permanent magnets’ magnetic poles need to be arranged in the same polarity manner, they are close enough.

关键词

摆式调谐质量阻尼器 / 电涡流阻尼 / 等效阻尼系数 / 磁路优化 / 振动频率 / 阻尼比

Key words

 pendulum tuned mass damper (PTMD) / planar eddy-current damper (PECD) / equivalent damping coefficient / magnetic circuit optimization / vibration frequency / damping ratio

引用本文

导出引用
汪志昊,郜辉,张新中,田文文. 单摆式电涡流TMD装置优化设计与模型试验研究[J]. 振动与冲击, 2018, 37(9): 1-7
WANG Zhihao, GAO Hui, ZHANG Xinzhong, TIAN Wenwen. Optimization design and model tests for a pendulum eddy-current tuned mass damper[J]. Journal of Vibration and Shock, 2018, 37(9): 1-7

参考文献

[1] 戴吉, 李春祥. 阻尼器在我国重大工程中的应用与发展[J]. 四川建筑科学研究, 2014, 40(3): 183-187.
Dai Ji, Li Chunxiang. Application and development of dampers to national key engineering [J]. Sichuan Building Science, 2014, 40(3): 183-187.
[2] 文永奎, 卢文良. 分布式TMD对斜拉桥抖振减振的参数优化及分析[J]. 土木工程学报, 2014, 47(6): 88-96.
Wen Yongkui, Lu Wenliang. Parametric optimization and analysis of distributed TMD for buffeting response control of cable-stayed bridge[J].China Civil Engineering Journal, 2014, 47(6):88-96.
[3] 王浩, 刘海红, 陶天友, 等. TMD对列车作用下大跨钢桁架桥的振动控制研究[J]. 振动工程学报, 2014, 27(3): 385-391.
Wang Hao, Liu Haihong, Tao Tianyou, et al. Vibration control of long-span steel truss bridge subjected to train loadings using TMD [J]. Journal of Vibration Engineering, 2014, 27 (3): 385-391.
[4] 王洪涛, 施卫星, 韩建平, 等. 钢连桥人致振动及TMD减振效应实测与分析[J]. 振动、测试与诊断, 2016, 36(3): 505-511.
Wang Hongtao, Shi Weixing, Han Jianping, ea tl. Anasys and in-sito test of human-induced vibration for the steel footbridge with and without TMD device[J]. Journal of Vibration, Measurement and Diagnosis, 2016, 36(3) :505-511.
[5] 施卫星, 李晓玮, 汪洋. 悬吊式TMD周期性能研究[J]. 结构工程师, 2014, 30(2): 74-78.
Shi Weixing, Li Xiaowei, Wang Yang. The characteristic period of the pendulum TMD [J]. Structural Engineers, 2014, 30(2): 74-78.
[6] Roffel J, Narasimhan S. Performance of pendulum tuned mass dampers in reducing the responses of flexible structures [J]. Journal of Structural Engineering, 2013, 139(12): 1-13.
[7] 刘勋, 施卫星, 陈希. 单摆式TMD简介及其减振性能分析[J]. 结构工程师, 2012, 28(6): 66-71.
Liu Xun, Shi Weixing, Chen Xi. Introduction and analysis of pendulum-type tuned mass damper [J]. Structural Engineers, 2012, 28(6): 66-71.
[8] Sodano H A, Bae J S. Eddy current damping in structures [J]. The Shock and Vibration Digest, 2004, 36(6): 469-478.
[9] 陈政清, 黄智文, 王建辉,等. 桥梁用TMD的基本要求与电涡流TMD[J]. 湖南大学学报(自然科学版), 2013, 40(8):6-10.
Chen Zhengqing, Huang Zhiwen, Wang Jianhui, et al. Basic requirements of tuned mass damper for bridges and the eddy current TMD [J]. Journal of Hunan University (Natural Sciences), 2013, 40(8):6-10.
[10] 汪志昊, 陈政清. 永磁式电涡流调谐质量阻尼器的研制与性能试验[J]. 振动工程学报, 2013, 26(3):374-379.
Wang Zhihao, Chen Zhengqing. Development and performance tests of an eddy-current tuned mass damper with permanent magnets [J]. Journal of Vibration Engineering, 2013, 26(3): 374-379.
[11] 雷旭, 牛华伟, 陈政清, 等. 大跨度钢拱桥吊杆减振的新型电涡流TMD开发与应用[J]. 中国公路学报, 2015, 28(4): 60-68.
Lei Xu, Niu Huawei, Chen Zhengqing, et al. Development and application of new type eddy current TMD for vibration control of hangers of long-span steel arch bridges [J]. China Journal of Highway and Transport, 2015, 28(4): 60-68.
[12] 蒙华昌, 杨超, 华旭刚, 等. 电涡流TMD应用于登机桥人致振动控制的研究[J]. 预应力技术, 2015, (1): 14-17.
Meng Huachang, Yang Chao, HUA Xugang, et al. Application of eddy-current TMD to pedestrian induced vibration control of aero-bridge [J]. Prestress Technology, 2015, (1): 14-17.
[13] Lu X, Zhang Q, Weng D, et al. Improving performance of a super tall building using a new eddy-current tuned mass damper[J]. Structural Control and Health Monitoring, 2016.
[14] Bourquin F, Caruso G, Peigney M, et al. Magnetically tuned mass dampers for optimal vibration damping of large structures[J]. Smart Material Structures, 2014, 23(8):75-93.
[15] Pluk K J W, Van Beek T A, Jansen J W, et al. Modeling and measurements on a finite rectangular conducting plate in an eddy current damper [J]. IEEE Transactions on Industrial Electronics, 2014, 61(8):4061-4072.
[16] Wang Z H, Chen Z Q, Wang J H. Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism [J]. Earthquake Engineering and Engineering Vibration, 2012, 11(3): 391-401.
[17] Zhang H, Kou B Q, Jin Y X, et al. Modeling and analysis of a novel planar eddy current damper[J]. Journal of Applied Physics, 2014, 115(17):17E7091-17E7093.
[18] 陈政清, 张弘毅, 黄智文. 板式电涡流阻尼器有限元仿真与参数优化[J]. 振动与冲击, 2016, 35(18):123-127.
Chen Zhengqing, Zhang Hongyi, Huang Zhiwen. FEM simulation and parameter optimization of a planar eddy current damper[J]. Journal of Vibration and Shock, 2016, 35(18):123-127.
[19] 汪志昊, 张闯, 周佳贞, 等. 新型装配式竖向电涡流TMD试验研究[J]. 振动与冲击, 2017, 36(1): 16-22.
Wang Zhihao, Zhang Chuang, Zhou Jiazhen, et al. Tests for a prefabricated vertical TMD with eddy-current damping[J]. Journal of Vibration and Shock, 2017, 36(1): 16-22.
[20] 上海材料研究所. 摆式电涡流调谐质量阻尼器装置: 中国, CN201310080464.3[P]. 2013-6-5.


PDF(1835 KB)

Accesses

Citation

Detail

段落导航
相关文章

/