不同四塔组合形式对特大型冷却塔局部风压干扰效应影响研究

王浩 柯世堂

振动与冲击 ›› 2018, Vol. 37 ›› Issue (9) : 106-113.

PDF(3629 KB)
PDF(3629 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (9) : 106-113.
论文

不同四塔组合形式对特大型冷却塔局部风压干扰效应影响研究

  • 王浩  柯世堂
作者信息 +

Influences of different four-tower combination forms on super-large cooling towers’ local wind pressure interference effect

  • WANG Hao ,  KE Shitang
Author information +
文章历史 +

摘要

局部风压过大是引起冷却塔局部损伤和破坏的重要因素之一,塔群干扰会显著改变冷却塔局部风压分布模式。四塔组合是火/核电厂冷却塔群最常见的组合形式之一,以在建世界最高冷却塔(220m)为工程背景,分别对单体、双塔和串列、矩形、菱形、L形、斜L型五种典型四塔组合方案共353种工况进行了测压风洞试验。在此基础上,系统讨论了不同四塔组合工况下冷却塔群风压干扰因子的分布特性,提炼出五种典型四塔组合形式对冷却塔平均和脉动风压分布模式的影响规律,最终基于数理统计和HHT(希尔伯特—黄)方法对局部风压信号进行了分解和时频联合谱特性分析。结果表明,不同四塔组合方案均为中间塔的局部风压受干扰效应影响最大,塔群效应对冷却塔最大正压的改变较小,对平均风压的影响区域主要集中于最小负压区和背风区;由于受端部三维效应影响,冷却塔顶部和底部脉动风压的分布模式和数值受四塔组合形式影响显著。不同四塔组合形式最小负压信号和喉部分离点风压信号分别近似呈现高斯和非高斯分布,干扰效应对最小负压信号的概率密度分布形式影响较小。固定塔间距下,典型四塔组合形式中对局部风压静力干扰最小的布置形式是菱形方案,对局部风压动力干扰最小的是斜L形方案。

Abstract

Excessive large local wind pressure is one of important factors causing a cooling tower’s local damage and destruction, and the interference effect of tower groups can significantly change cooling tower’s local wind pressure distribution pattern. Taking the world’s highest cooling tower (220m) now being built as the engineering background, the wind tunnel tests for a single tower, two towers and five typical four-tower combinations were conducted. The distribution features of four-tower combinations’ wind pressure interference factor were discussed. Influence laws of four-tower combinations on distribution modes of cooling towers’ mean wind pressure and fluctuating one were analyzed. Wind pressure signals were decomposed and analyzed in time-frequency domain based on the mathematical statistics and Hilbert-Huang transformation (HHT). The results showed that the interference effect of four-tower combinations on the middle tower is the maximum; the influence of four-tower combination effect on mean wind pressure mainly focuses on the minimum negative pressure area and leeward zone; in 5 typical four-tower combinations, the diamond scheme has the smallest static interference on local wind pressure, and the oblique L-shaped scheme has the smallest dynamic interference on local wind pressure.

关键词

四塔组合 / 特大型冷却塔 / 风洞试验 / 干扰因子 / 局部风压 / 非高斯特性

Key words

  / four-tower combination, super-large cooling tower, wind tunnel test, interference factor, local wind pressure, non-Gaussian features

引用本文

导出引用
王浩 柯世堂. 不同四塔组合形式对特大型冷却塔局部风压干扰效应影响研究[J]. 振动与冲击, 2018, 37(9): 106-113
WANG Hao,KE Shitang. Influences of different four-tower combination forms on super-large cooling towers’ local wind pressure interference effect[J]. Journal of Vibration and Shock, 2018, 37(9): 106-113

参考文献

[1] 柯世堂, 侯宪安, 姚友成, 等. 大型冷却塔结构抗风研究综述与展望[J]. 特种结构, 2012, 29(6):5-10.
Ke S T, Hou X A, Yao Y C, et al. Review and prospect of wind resistance researches on large cooling towers[J]. Special Structures, 2012, 29(6):5-10.
[2] Armitt J. Wind loading on cooling towers[J]. Journal of the Structural Division, 1980, 106(3):623-641.
[3] 王浩, 柯世堂. 三种典型子午线型大型冷却塔风致响应分析[J]. 力学与实践, 2015, 37(6):690-697.
Wang H, Ke S T. Wind-induced response analysis for large cooling tower with three typical meridian curves[J]. Mechanics in engineering, 2015, 37(6):690-697.
[4] Niemann H J, Kopper H D. Influence of adjacent buildings on wind effects on cooling towers[J]. Engineering Structures, 1998, 20(10):874-880.
[5] Orlando M. Wind-induced interference effects on two adjacent cooling towers[J]. Engineering Structures, 2001, 23(8):979-992.
[6] 沈国辉, 余关鹏, 孙炳楠, 等. 大型冷却塔双塔干扰的风洞试验研究[J]. 振动与冲击, 2011, 30(3); 109-114.
Shen G H, Yu G P, Sun B N, et al. Study on wind-induced interference effects of two large hyperbolic cooling towers by using wind tunnel test[J]. Journal of Vibration and Shock, 2011, 30(3): 109-114.
[7] 邹云峰, 牛华伟, 陈政清. 基于完全气动弹性模型的冷却塔干扰效应风洞试验研究[J]. 湖南大学学报:自然科学版, 2013, 40(12):1-7.
Zou Y F, Niu H W, Chen Z Q. Wind tunnel test on wind-induced interference effect of cooling towers based on full aero-elastic model[J]. Journal of Hunan University (Natural Sciences), 2013, 40(12):1-7
[8] 张军锋, 葛耀君, 赵林. 群塔布置对冷却塔整体风荷载和风致响应的不同干扰效应[J]. 工程力学, 2016, 33(8):15-23.
Zhang J F, Ge Y J, Zhao L. Interference effects on global wind loads and wind induced responses for group hyperboloidal cooling towers[J]. Engineering mechanics, 2016, 33(8):15-23.
[9] Ke S T, Ge Y J, Zhao L, et al. Stability and Reinforcement Analysis of Superlarge Exhaust Cooling Towers Based on a Wind Tunnel Test[J]. Journal of Structural Engineering, ASCE, 2015, 141(12):04015066.
[10] 程霄翔, 赵林, 葛耀君. 典型矩形八塔超大型冷却塔塔群风致干扰效应试验[J]. 中南大学学报(自然科学版), 2013, 44(1):372-380.
Chen X X, Zhao L, Ge Y J. Wind tunnel investigation on interference effect of eight grouped super large cooling towers with rectangular arrangement[J]. Journal of Central South University (Science and Technology), 2013, 44(1):372-380.
[11] GB50009-2012. 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社. 2012.
GB50009-2012. Load code for the design of building structures[S]. Beijing: China Building Industry Press, 2012.
[12] Farell C, Guven O, Maisch F. Mean wind loading on rough-walled cooling towers[J]. Journal of the Engineering Mechanics Division, 1976, 102(6):1059-1081.
[13] Suna T F, Zhoub L M. Wind pressure distribution around a ribless hyperbolic cooling tower[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 14(s 1–3):181–192.
[14] GB/T 50102-2014. 工业循环水冷却设计规范[S]. 北京: 中国计划出版社, 2014
GB/T 50102-2014. Code for design of cooling for industrial recirculating water [S]. Beijing: China Planning Press, 2014.
[15] Ke S T, Liang J, Zhao L, Ge Y J. Influence of ventilation rate on the aerodynamic interference for two IDCTs by CFD[J]. Wind and Structures, An International Journal, 2015, 20(3): 449-468.
[16] JSJ/T 338-2014. 建筑工程风洞试验方法标准[S]. 北京: 中国建筑工业出版社, 2014.
JSJ/T 338-2014. Standard for wind tunnel test of buildings and structures[S]. Beijing: China Building Industry Press, 2014.
[17] 柯世堂, 葛耀君, 赵林. 大型双曲冷却塔表面脉动风压随机特性—风压极值特性探讨[J]. 实验流体力学, 2010, 24(04): 7-12.
Ke S T, Ge Y J, Zhao L. Research on festures of fluctuating wind pressure on large hyperbolic cooling tower: discussions on extreme wind pressure[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(04): 7-12.
[18] 柯世堂, 夏逸鸣, 王法武. 考虑气弹效应的超大型冷却塔脉动风压非高斯特性研究[J]. 中南大学学报(自然科学版), 2013, 44(08): 3302-3309.
Ke S T, Xia Y M, Wang F W. Non-Gaussian features on fluctuating wind pressure for super large cooling towers with aero-elastic effect[J]. Journal of Central South University (Science and Technology) , 2013, 44(08): 3302-3309.
[19] 柯世堂, 赵林, 邵亚会,等. Wavelet_Huang和Hilbert_Huang方法用于非高斯风压信号分析的比较研究[J]. 土木工程学报, 2011, 44(6):61-67.
Ke S T, Zhao L, Shao Y H, et al. Comparison of WHT and HHT methods for analyzing non-Gaussian wind pressure signals[J]. China civil engineering journal, 2011, 44(6):61-67.
[20] 赵杨, 曹曙阳, 武岳,等. 几种非平稳分析方法对非平稳风力时程的比较分析[J]. 土木工程学报, 2011, 44(9):51-57.
Zhao Y, Cao S Y, Wu Y, et al. Comparison of several non-stationary methods for analysis of time history of non-stationary wind pressure[J]. China civil engineering journal, 2011, 44(9):51-57.

PDF(3629 KB)

Accesses

Citation

Detail

段落导航
相关文章

/