空间刚性梁轨道与姿态耦合动力学问题的辛分析

尹婷婷1,邓子辰1, 2,蒋宪宏1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (9) : 168-172.

PDF(931 KB)
PDF(931 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (9) : 168-172.
论文

空间刚性梁轨道与姿态耦合动力学问题的辛分析

  • 尹婷婷1,邓子辰1, 2,蒋宪宏1
作者信息 +

Symplectic analysis for orbit-attitude coupled dynamic problem of spatial rigid beams

  • YIN Tingting1, DENG Zichen1,2, JIANG Xianhong1
Author information +
文章历史 +

摘要

以空间结构中某些大刚度小尺寸连接件在轨组装之前的动力学问题为研究背景,建立了空间刚性梁的轨道与姿态耦合问题的动力学模型。针对建立的保守动力学模型,采用辛龙格库塔方法模拟了刚性梁的动力学行为,从刚性梁的轨道半径、真近角和姿态角演化过程的数值结果中,发现了随着初始姿态角速度的增加,梁轨道与姿态之间的耦合效应将加剧;通过记录每一时间步的系统总能量相对误差,并与传统龙格库塔方法的计算结果进行对比,间接地验证了所得到数值结果的正确性,同时也验证了辛龙格库塔方法的长时间数值稳定性。

Abstract

Taking dynamic problems of some large stiffness and small size adapting pieces in complex spatial structures before on-orbit assembly as studying background, the orbit-attitude coupled dynamic model for spatial rigid beams was established. With this dynamic model, the symplectic Runge-Kutta method was adopted to simulate dynamic behaviors of a spatial rigid beam. From the obtained numerical results about evolution processes of the beam’s orbit radius, true anomaly and attitude angle, it was shown that with increase in initial attitude angular speed, the orbit-attitude coupled effects become more obvious; the relative error of the system total energy within each time step is recorded, all relative errors are compared with those in the numerical results using the classic Runge-Kutta method, the correctness of the numerical results using the symplectic Runge-Kutta method and the long-time numerical stability of the symplectic Runge-Kutta method are verified.


关键词

刚性梁 / 轨道与姿态耦合 / 辛龙格库塔方法 / 保能量

Key words

 rigid beam / orbit-attitude coupling / symplectic Runge-Kutta method / energy-preserving

引用本文

导出引用
尹婷婷1,邓子辰1, 2,蒋宪宏1. 空间刚性梁轨道与姿态耦合动力学问题的辛分析[J]. 振动与冲击, 2018, 37(9): 168-172
YIN Tingting1, DENG Zichen1,2, JIANG Xianhong1. Symplectic analysis for orbit-attitude coupled dynamic problem of spatial rigid beams[J]. Journal of Vibration and Shock, 2018, 37(9): 168-172

参考文献

[1] 刘锦阳, 洪嘉振. 大范围运动空间梁的耦合动力学模型[J]. 上海交通大学学报, 2003, 37(4):532-534
LIU Jinyang, HONG Jiazhen. Coupling dynamic modeling of the spatial beam undergoing large overall motions[J]. Jornal of Shanghai Jiaotong University, 2003, 37(4):532-534
[2] da Silva M R C, Zaretzky C L. Nonlinear dynamics of a flexible beam in a central gravitational field—I. equations of motion[J]. International Journal of Solids and Structures, 1993, 30(17):2287-2299
[3] da Silva M R C, Zaretzky C L. Nonlinear dynamics of a flexible beam in a central gravitational field—II. nonlinear motions in circular orbit[J]. International Journal of Solids and Structures, 1993, 30(17):2301-2316
[4] Chen Z Q, Agar T J A. Geometric nonlinear analysis of flexible spatial beam structures[J]. computers & structures, 1993, 49(6):1083-1094
[5] Quadrelli B, Atluri S. Analysis of flexible multibody systems with spatial beams using mixed variational principles[J]. International Journal for Numerical Methods in Engineering, 1998, 42(6):1071-1090
[6] 刘锦阳, 李彬, 洪嘉振. 作大范围空间运动柔性梁的刚-柔耦合动力学[J]. 力学学报, 2006, 38(2):276-282
LIU Jinyang, LI Bin, HONG Jiazhen. Rigid-flexible coupling dynamics of a flexible beam with three-dimensional large overall motion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2):276-282
[7] Zhang Z G, Qi Z H, Wu Z G, et al. A spatial Euler-Bernoulli beam element for rigid-flexible coupling dynamic analysis of flexible structures[J]. Shock and Vibration, 2015, DOI: 10.1155/2015/208127
[8] 张志刚, 齐朝晖, 吴志刚, 等. 考虑变形耦合的几何非线性空间梁单元[J]. 计算力学学报, 2014, 31(5):603-608, 621
ZHANG Zhigang, QI Zhaohui, WU Zhigang, et al. A geometrical nonlinear space beam element with considering deformation coupling[J]. Chinese Journal of Computational Mechanics, 2014, 31(5):603-608, 621
[9] Hu W P, Li Q J, Jiang X H, et al. Coupling dynamic behaviors of spatial flexible beam with weak damping[J]. International Journal for Numerical Methods in Engineering, 2017, DOI: 10.1002/nme.5477
[10] Hu W P, Deng Z C, Han S M, et al. Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs[J]. Journal of Computational Physics, 2013, 235:394-406
[11] 胡伟鹏, 邓子辰, 吴子燕, 等. 桥梁在移动荷载作用下动力学响应的广义多辛算法[J]. 振动与冲击, 2008, 27(4):66-69, 94
HU Weipeng, DENG Zichen, WU Ziyan, et al. Generalized multi-symplectic method for bridges subjected to moving loads[J]. Journal of Vibration and Shock, 2008, 27(4):66-69, 94
[12] 徐圣, 刘锦阳, 余征跃. 几何非线性空间梁的动力学建模与实验研究[J]. 振动与冲击, 2014, 33(21):108-113
XU Sheng, LIU Jinyang, YU Zhengyue. Dynamic modeling and tests for a geometric nonlinear spatial beam[J]. Journal of Vibration and Shock, 2014, 33(21):108-113
[13] 刘铁权; 邓子辰; 周加喜. 基于辛数学方法的一维声子晶体禁带计算[J]. 振动与冲击, 2010, 29(12):102-105, 241
LIU Tiequan, DENG Zichen, ZHOU Jiaxi. Symplectic method for calculation of band gap of one-dimensional phononic crystals[J]. Journal of Vibration and Shock, 2010, 29(12):102-105, 241
[14] 邓子辰, 曹珊珊, 李庆军, 等. 基于辛 Runge-Kutta 方法的太阳帆塔动力学特性研究[J]. 中国科学: 技术科学, 2016, 46: 1242-1253
DENG Zichen, CAO Shanshan, LI Qingjun, et al. Dynamic behavior of sail tower SPS based on the symplectic Runge-Kutta method[J]. Sci Sin Tech, 2016, 46:1242-1253
[15] Feng K. On Difference schemes and symplectic geometry[C], Proceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, Beijing: Science Press, 1984, 42-58
[16] Bridges T J. Multi-symplectic structures and wave propagation[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1997, 121(1):147-190
[17] Feng K. Difference-schemes for Hamiltonian-Formalism and symplectic-geometry[J]. Journal of Computational Mathematics, 1986, 4(3):279-289
[18] Sanz-Serna J M. Runge-Kutta schemes for Hamiltonian systems[J]. BIT Numerical Mathematics, 1988, 28(4):877-883

PDF(931 KB)

361

Accesses

0

Citation

Detail

段落导航
相关文章

/