Volterra理论在滚动轴承内圈故障程度特征定量提取的研究

王海涛,王琨,史丽晨

振动与冲击 ›› 2018, Vol. 37 ›› Issue (9) : 173-179.

PDF(1485 KB)
PDF(1485 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (9) : 173-179.
论文

Volterra理论在滚动轴承内圈故障程度特征定量提取的研究

  • 王海涛,王琨,史丽晨
作者信息 +

Quantitative extraction of rolling bearings’ inner race fault level based on Volterra theory

  •   WANG Haitao  WANG Kun  SHI Lichen
Author information +
文章历史 +

摘要

针对滚动轴承内圈不同损伤程度的特征提取问题,提出一种基于Volterra核函数理论和双谱分析相结合的故障特征定量提取方法。该方法首先利用系统输入输出振动信号确定Volterra模型;其次通过改进的多脉冲激励法对模型的Volterra核函数进行求解,并利用广义频率响应函数(GFRF)进行模型辨识;最后利用双谱及其切片谱图手段,分离并且量化提取二阶核函数中由于相位耦合所隐含的故障程度特征信息。利用滚动轴承试验台采集数据,对此分析方法进行实验验证,并与包络谱分析进行了对比。结果表明:在无明显冲击振动的情况下,利用双谱切片方法可以直观地对Volterra二阶核函数进行量化表述,并且能够有效地将正常轴承和不同损伤程度的内圈故障轴承进行区分。

Abstract

To extract effectively features of different damage levels on rolling bearings’ inner race, a method of quantitative fault feature extraction based on the combination of Volterra kernel function theory and bi-spectral analysis was proposed. Firstly, input signals and output ones of a system were used to determine a Volterra model. Secondly, Volterra kernel function of the model was solved with the improved multi-pulse excitation method. The model was identified using the generalized frequency response function (GFRF). Finally, using the means of bi-spectrum and its slices, the information of damage level features implied in the second order kernel function due to phase coupling was separated, quantized and extracted. A rolling bearing test table was used to collect faulty bearings’ data to verify the proposed analysis method. The results were compared with those using the envelope spectral analysis method. The results showed that the bi-spectral slice method can be used to intuitively and quantitatively express the information implied in Volterra second order kernel function when there are not obvious shock vibration, and effectively distinguish normal bearings and faulty bearings with different inner race damage levels.

关键词

滚动轴承 / 特征提取 / Volterra级数 / 核函数 / 双谱切片

Key words

rolling bearing / feature extraction / Volterra series / kernel function / bi-spectral slice

引用本文

导出引用
王海涛,王琨,史丽晨. Volterra理论在滚动轴承内圈故障程度特征定量提取的研究[J]. 振动与冲击, 2018, 37(9): 173-179
WANG Haitao WANG Kun SHI Lichen. Quantitative extraction of rolling bearings’ inner race fault level based on Volterra theory[J]. Journal of Vibration and Shock, 2018, 37(9): 173-179

参考文献

[1] 李娟,周东华,司小胜,等. 微小故障诊断方法综述[J]. 控制理论与应用, 2012, (12): 1517-1529.
LI Juan, ZHOU Donghua, SI Xiaosheng, et al.Review of incipient fault diagnosis methods[J].Control Theory & Applications. 2012, (12): 1517-1529.
[2] 王国彪,何正嘉,陈雪峰,等. 机械故障诊断基础研究“何去何从”[J]. 机械工程学报, 2013, (01): 63-72.
WANG Guobiao, He Zhengjia, Chen Xuefeng, et al. Basic Research on Machinery Fault Diagnosis-What is the Prescription [J].Chinese Journal of Mechanical Engineering, 2013, (01): 63-72.
[3] 蔡艳平,李艾华,石林锁,等. 基于EMD与谱峭度的滚动轴承故障检测改进包络谱分析[J]. 振动与冲击, 2011, (02): 167-172+191.
CAI Yanping,Li Aihua,Shi Linsuo, et al. Roller bearing fault detection using poved anaiysis based on }n and spectxum envelope spectxum kurtosis [J]. Journal of Vibration& Shock. 2011, (02): 167-172+191.
[4] Lingjie Meng, Jiawei Xiang, Yongteng Zhong, et al.Fault diagnosis of rolling bearing based on second generation wavelet denoising and morphological filter[J]. Journal of Mechanical Science & Technology, 2015, 29(8): 3121-3129.
[5] P. K. Kankar,Satish C. Sharma,S. P. Harsha. Rolling element bearing fault diagnosis using wavelet transform[J]. Neurocomputing, 2011, 74(10): 1638-1645.
[6] Dejie Yu,Junsheng Cheng,Yu Yang. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J]. Mechanical Systems & Signal Processing, 2005, 19(2): 259-270.
[7] 张龙,黄文艺,熊国良. 基于多尺度熵的滚动轴承故障程度评估[J]. 振动与冲击,2014, (09): 185-189.
ZHANG Long,Huang Wenxing,Xiong Guoliang.Assessment of rolling element bearing fault severity using multi-scale entropy [J]. Journal of Vibration& Shock. 2014, (09): 185-189.
[8] 王玉静,姜义成,康守强,等. 基于优化集合EMD的滚动轴承故障位置及性能退化程度诊断方法[J]. 仪器仪表学报,2013, (08): 1834-1840.
WANG Yujing,JIANG Yicehng,KANG Shouqiang et al. Diagnosis method of fault location and performance degradation degree of rolling bearing based on optimal ensemble EMD[J]. Chinese Journal of Scientific Instrument. 2013, (08): 1834-1840.
[9] 彭志科,程长明. Volterra级数理论研究进展与展望[J]. 科学通报, 2015, (20): 1874-1888.
PENG Zhi Ke , CHENG Chang Ming.Volterra series theory: A state-of-the-art review[J]. Chinese Science Bulletin, 2015, (20): 1874-1888.
[10] Qisheng Wang,Keyan Wang,Shaojun Chen. Least squares approximation method for the solution of Volterra–Fredholm integral equations[J]. Journal of Computational & Applied Mathematics, 2014, 272(3): 141-147.
[11] 魏瑞轩,韩崇昭,张优云,等. 非线性系统故障诊断的Volterra模型方法[J]. 系统工程与电子技术, 2004, (11): 1736-1738+1752.
WEI Ruixuan, Han Chongzhao, Zhang Youyun,et al. Volterra Model Method for Fault Diagnosis of Nonlinear System[J]. Systems Engineering and Electronics, 2004, (11): 1736-1738+1752.
[12] 韩海涛,马红光,曹建福,等. 多输入多输出非线性系统Volterra频域核的非参数辨识方法[J]. 西安交通大学学报, 2012, (10): 66-71.
HAN Haitao, MA Hongguang, CAO Jianfu, et al.A Non-Parametric Identification Method of Volterra Frequency Domain Kernels for MIMO Nonlinear System[J]. Journal of Xi'an Jiaotong University, 2012, (10): 66-71.
[13] 窦唯,刘占生. 旋转机械故障诊断的图形识别方法研究[J]. 振动与冲击, 2012, (17): 171-175.
DOU Wei, LIU Zhan-sheng. A fault diagnosis method based on graphic recognition for rotating machinery[J]. Journal of Vibration& Shock.2012, (17): 171-175.

PDF(1485 KB)

Accesses

Citation

Detail

段落导航
相关文章

/