基于局域共振声子带隙的扭转减振器设计方法

吴昱东,李人宪,丁渭平,杨明亮,马逸飞

振动与冲击 ›› 2018, Vol. 37 ›› Issue (9) : 180-184.

PDF(933 KB)
PDF(933 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (9) : 180-184.
论文

基于局域共振声子带隙的扭转减振器设计方法

  • 吴昱东,李人宪,丁渭平,杨明亮,马逸飞
作者信息 +

Design method for torsional vibration dampers based on local resonance photonic crystals band-gap

  • WU Yudong, LI Renxian, DING Weiping, YANG Mingliang, MA Yifei
Author information +
文章历史 +

摘要

通过动态等效转动惯量分析,讨论了扭转减振器的减振频带特性与局域共振声子晶体带隙的相似性。基于局域共振声子晶体理论提出扭转减振器减振带隙的计算方法,并研究了扭转减振器几何设计参数及材料设计参数对减振带隙的影响规律。在此基础上,针对某国产MPV车型传动系扭转振动引致的车内轰鸣声问题,运用减振带隙计算方法设计扭转减振器,试制、安装样件并进行整车传动系扭振及车内噪声试验,结果表明,该扭转减振器可有效抑制传动系扭转振动,降低车内轰鸣声,提升整车声振舒适性。

Abstract

The similarity between vibration reduction frequency band features of torsional vibration dampers (TVDs) and local resonance photonic crystals band gap ones was discussed with the dynamic equivalent moment of inertia analysis. A new method to calculate TVDs’ vibration reduction frequency band gap was proposed based on the theory of local resonance photonic crystals. The influences of TVDs’ geometric parameters and material ones on their vibration reduction band gaps were studied. Aiming at a certain multi-purpose vehicle (MPV)’s interior booming noise problem caused by its powertrain torsional vibration, this method for calculating vibration reduction frequency band gap was used to design a TVD. It was manufactured and installed in the MPV. The MPV’s powertrain torsional vibration tests and vehicle interior noise tests were conducted. The results showed that this TVD can effectively suppress the MPV’s powertrain torsional vibration, reduce its interior booming noise and improve the whole vehicle’s NVH performance.
 

关键词

局域共振 / 扭转减振器 / 声子晶体 / 带隙 / 等效转动惯量

Key words

 local resonance / torsional vibration damper / photonic crystals / band-gap / equivalent moment of inertia

引用本文

导出引用
吴昱东,李人宪,丁渭平,杨明亮,马逸飞. 基于局域共振声子带隙的扭转减振器设计方法[J]. 振动与冲击, 2018, 37(9): 180-184
WU Yudong, LI Renxian, DING Weiping, YANG Mingliang, MA Yifei. Design method for torsional vibration dampers based on local resonance photonic crystals band-gap[J]. Journal of Vibration and Shock, 2018, 37(9): 180-184

参考文献

[1] Bozca M. Torsional vibration model based optimization of gearbox geometric design parameters to reduce rattle noise in an automotive transmission[J]. Mechanism and Machine T`heory. 2010, 45(11): 1583-1598.
[2] 吴昱东,李人宪,丁渭平,等. 基于半轴扭转刚度调校的新型微客轰鸣声治理[J]. 噪声与振动控制. 2016(01): 70-74.
WU Yudong, LI Renxian, DING Weiping, et al. Interior booming noise reduction in new minivans based on axle-shaft torsional stiffness modification [J]. Noise and vibration control. 2016(01): 70-74.
[3] Foulard S, Rinderknecht S, Ichchou M, et al. Automotive drivetrain model for transmission damage prediction[J]. Mechatronics. 2015, 30: 27-54.
[4] Deuszkiewicz P, Pankiewicz J, Dziurd J, et al. Modeling of powertrain system dynamic behavior with torsional vibration damper[C]. Trans Tech Publications Ltd, 2014.
[5] 上官文斌,魏玉明,赵旭,等. 橡胶阻尼式扭转减振器固有频率计算与测试方法的研究[J]. 振动工程学报. 2015(04): 550-559.
SHANGGUAN Wenbin, WEI Yuming, ZHAO Xu, et al. A study on method of calculation and measurement for natural frequency of torsional vibration rubber dampers [J]. Journal of Vibration Engineering. 2015(04): 550-559.
[6] Mendes A S, Meirelles P S, Zampieri D E. Analysis of torsional vibration in internal combustion engines: Modelling and experimental validation[J]. Proceedings of the Institution of Mechanical Engineers Part K Journal of Multi-body Dynamics. 2008, 222(2): 155-178.
[7] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials [J]. Science, 2000, 289: 1734.
[8] ZHANG S, WU J, HU Z. Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators [J]. Journal of Applied Physics. 2013, 113(16): 163511-163518.
[9] MEI J, MA G, YANG M, et al. Dark acoustic metamaterials as super absorbers for low-frequency sound[J]. Nature Communications. 2012, 3(2): 132-136.
[10] LU M, FENG L, CHEN Y. Phononic crystals and acoustic metamaterials [J]. Materials Today. 2009, 12(12): 34-42.
[11] Romero-García V, Krynkin A, Garcia-Raffi L M, et al. Multi-resonant scatterers in sonic crystals: Locally multi-resonant acoustic metamaterial[J]. Journal of Sound and Vibration. 2013, 332(1): 184-198.
[12] Lucklum R. Phononic Crystals and Metamaterials – Promising New Sensor Platforms [J]. Procedia Engineering. 2014, 87: 40-45.
[13] LI E, HE Z C, WANG G. An exact solution to compute the band gap in phononic crystals [J]. Computational Materials Science. 2016, 122: 72-85.
[14] LI S, CHEN T, WANG X, et al. Expansion of lower-frequency locally resonant band gaps using a double-sided stubbed composite phononic crystals plate with composite stubs [J]. Physics Letters A. 2016, 380(25–26): 2167-2172.
[15] QIAN D, SHI Z. Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring–mass resonators [J]. Physics Letters A. 2016, 380(41): 3319-3325.
[16] 温熙森. 声子晶体[M]. 国防工业出版社, 2009.
WEN Xisen. Photonic Crystal [M]. National Defence Industry Press, 2009.
[17] SHEN L, WU J, ZHANG S, et al. Low-frequency vibration energy harvesting using a locally resonant phononic crystal plate with spiral beams [J]. Modern Physics Letters B. 2015, 29(1): 1450511-1450529.

PDF(933 KB)

Accesses

Citation

Detail

段落导航
相关文章

/