摘要
在强背景噪声干扰下,快速峭度图提取滚动轴承微弱信号故障的特征效果并不明显。将迭代滤波(Iterative Filtering,IF)和快速峭度图相结合用于滚动轴承的微弱故障特征提取。滚动轴承故障振动信号通过迭代滤波进行自适应分解得到一组内禀模态分量,用迭代滤波对强噪声滚动轴承信号进行降噪处理,用快速峭度图构造最优带通滤波器,最后将滤波后信号的包络谱与轴承故障特征频率进行比较,从而诊断出具体故障。通过仿真和试验验证了所述方法的有效性及优点。
Abstract
The effect of fast kurtogram to extract rolling bearings’ weak fault signals is not obvious under interference of strong background noise. Here, rolling bearings’ weak fault feature extraction was conducted with the combination of iterative filtering and fast kurtogram. The faulty bearing’s vibration signals were adaptively decomposed into a group of intrinsic mode components with iterative filtering. The iterative filtering method was used to denoise rolling bearing’s vibration signals with strong noise. An optimal band-pass filter was constructed using the fast kurtogram.Finally, the envelope spectra of the filtered signals were compared with fault feature frequencies of rolling bearings to judge the diagnosed bearing’s fault types.The effectiveness and advantages of the proposed method were verified with numerical simulation and tests.
关键词
迭代滤波 /
快速峭度图 /
经验模态分解 /
轴承故障诊断
{{custom_keyword}} /
Key words
iterative filtering /
fast kurtogram /
empirical mode decomposition (EMD);bearing fault diagnosis
{{custom_keyword}} /
钟先友,田红亮,赵春华,陈保家,陈法法.
基于迭代滤波和快速峭度图的滚动轴承微弱故障特征提取[J]. 振动与冲击, 2018, 37(9): 190-195
ZHONG Xianyou,TIAN Hongliang,ZHAO Chunhua,CHEN Baojia,CHEN Fafa.
Fault feature extraction for rolling bearings’ weak faults based on iterative filtering and fast kurtogram[J]. Journal of Vibration and Shock, 2018, 37(9): 190-195
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Huang N E,Shen Z,Long S R.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London Series,1998,454(1971):903-995.
[2] Cheng Junsheng,Yu Dejie,Yang Yu. Application of SVM and SVD technique based on EMD to the fault diagnosis of the rotating machinery[J]. Shock and Vibration,2009,16(1): 89-98.
[3] 汤宝平,蒋永华,张详春. 基于形态奇异值分解和经验模态分解的滚动轴承故障特征提取方法[J]. 机械工程学报,2010,46(5):37-42,48.
Tang Baoping,Jiang Yonghua,Zhang Xiangchun. Feature extraction method of rolling bearing fault based on singular value decomposition-morphology filter and empirical mode decomposition transform [J]. Journal of Mechanical Engineering,2010,46(5):37-42,48.
[4] 唐海英,栾军英,郑海起,等. 基于阶次跟踪和经验模态分解的滚动轴承包络解调分析[J]. 机械工程学报,2007,43(8):119-122.
Tang Haiying, Luan Junying, Zheng Haiqi, et al. Envelope demodulation analysis of bearing based on order tracking and empirical mode decomposition [J]. Journal of Mechanical Engineering,2007,43(8):119-122.
[5] Cheng Junsheng,Yu Dejie,Yang Yu. Energy operator demodulating approach based on EMD and its application in mechanical fault diagnosis [J]. Chinese Journal of Mechanical Engineering,2004,40(8):115-118.
[6] Li Hui,Zhang Yuping,Zheng Haiqi. Hilbert-Huang transform and marginal spectrum for detection and diagnosis of localized defects in roller bearings [J]. Journal of Mechanical Science and Technology,2009,23(2):291-30.
[7] 唐先广,郭瑜,丁彦春. 基于独立分量分析与希尔伯特-黄变换的轴承故障特征提取[J]. 振动与冲击,2011,30(10): 45-49.
Tang Xianguang,Guo Yu,Ding Yanchun. Application of hilbert huang transition and independent components analysis on rolling element bearing faults features extraction [J]. Journal of Vibration and Shock,2011,30(10): 45-49.
[8] 苏文胜,王奉涛,张志新. EMD降噪和谱峭度方法在滚动轴承早期故障诊断中的应用[J]. 振动与冲击,2010,29(3): 18-21.
Su Wensheng,Wang Fengtao,Zang Zhixin,et al. Application of EMD denoising and spectral kurtosis in early fault diagnosis of rolling element bearings [J]. Journal of Vibration and Shock,2010,29(3): 18-21.
[9] 高强,杜小山,范虹,等. 滚动轴承故障的EMD诊断方法研究[J]. 振动工程学报,2007,20(1): 15−18.
Gao Qiang,Du Xiao-shan,Fan Hong,et al. An empirical mode decomposition based method for rolling bearing fault diagnosis [J].Journal of Vibration Engineering,2007,20(1): 15-18.
[10] 陈略,訾艳阳,何正嘉等.总体平均经验模式分解与1.5维谱方法的研究[J].西安交通大学学报,2009,43(5):94-98.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}