基于混沌超声波激励的螺栓连接松动检测研究

吴冠男,徐超

振动与冲击 ›› 2018, Vol. 37 ›› Issue (9) : 208-213.

PDF(1216 KB)
PDF(1216 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (9) : 208-213.
论文

基于混沌超声波激励的螺栓连接松动检测研究

  • 吴冠男,徐超
作者信息 +

Bolt looseness detection based on chaos ultrasonic excitation

  • WU Guan-nan,  XU Chao
Author information +
文章历史 +

摘要

在服役过程中,螺栓连接受到多种环境因素的作用可能会发生预紧力下降、松动甚至松脱。连接部位早期松动的可靠检测对确保结构的可靠性和安全性具有重要的意义。本文采用高频具有混沌特征的超声波信号激励待测连接结构,采集结构的动力响应信号,利用非线性时间序列分析方法提取表征连接松动的特征参量。以螺栓搭接梁为研究对象,采用压电陶瓷片作为激励和响应信号采集元件。对响应信号进行解调和相空间重构,提取表征吸引子整体特征的Lyapunov维数和表征吸引子局部特征的平均吸引子局部方差比ALAVR作为松动指标。实验结果表明:本文的方法能够有效检测螺栓连接的松动状态;吸引子特征量ALAVR相较于Lyapunov维数对预紧力下降具有更好的检测效果;特征参量ALAVR能够有效检测出早期的螺栓松动。

Abstract

Under severe loading conditions, bolted joints in assembled structures may loosen or fail. Reliability detection for early looseness in connection positions is significant to ensure the reliability and safety of structures. Here, high-frequency ultrasonic signals with a chaotic feature were adopted to excite a connection structure to be detected to acquire dynamic response signals of the structure, and use the nonlinear time series analysis method to extract feature parameters to characterize bolt looseness. Taking a typical bolted lap beam as the study object and piezoelectric ceramic pieces as units to collect excitation and response signals, the structure’s response signals were demodulated and reconstructed in a phase space. Lyapunov dimension to characterize an attractor’s whole features and ALAVR to reflect an attractor’s local features were extracted and taken as looseness indexes. Test results showed that the proposed method can effectively detect the looseness state of bolted joints; compared with Lyapunov dimension, an attractor’s feature parameter ALAVR can better detect the decline of pre-tightening force in bolts, ALAVR can effectively detect early bolt looseness.

关键词

螺栓连接 / 混沌 / 超声激励 / 非线性时间序列分析 / 健康监测

Key words

bolt fastening / chaos / ultrasonic excitation / nonlinear time series analysis / health monitoring

引用本文

导出引用
吴冠男,徐超. 基于混沌超声波激励的螺栓连接松动检测研究[J]. 振动与冲击, 2018, 37(9): 208-213
WU Guan-nan, XU Chao . Bolt looseness detection based on chaos ultrasonic excitation[J]. Journal of Vibration and Shock, 2018, 37(9): 208-213

参考文献

[1] C. C. H. Guyott, P. Cawley, R. D. Adams. The Non-destructive Testing of Adhesively Bonded Structure: A Review[J]. Journal of Adhesion, 1986, 20(2):129-159.
[2] Doebling S W, Farrar C R, Prime M B, et al. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review[J]. Shock & Vibration Digest, 1996, 30(11):2043-2049.
[3] Todd M D, Nichols J M, Nichols C J, et al. An assessment of modal property effectiveness in detecting bolted joint degradation: theory and experiment[J]. Journal of Sound & Vibration, 2004, 275(275):1113-1126.
[4] M D Todd. Vibration-based damage assessment utilizing state space geometry changes: local attractor variance ratio.
[5] 裘群海, 张振军, 徐超. 一种采用混沌振动信号激励识别连接状态的方法[C]// 全国设备故障诊断学术会议. 2010.Qiu Qunhai, Zhang Zhenjun, Xu Chao. A condition identification method of bolted joints using chaotic excitation[C]// National Conference on equipment fault diagnosis. 2010.
[6] 裘群海, 徐超, 吴斌. 基于混沌激励与吸引子分析的结合面损伤识别方法[J]. 振动与冲击, 2012, 31(11):118-121.QIU Qun-hai, XU Chao, WU Bin. Joint damage identification using chaotic excitation and attractor analysis[J]. Journal of  Vibration and Shock, 2012, 31(11):118-121.
[7] Raghavan A C, Cesnik C E S. Review of Guided-Wave Structural Health Monitoring[J]. Shock & Vibration Digest, 2007, 39(2):91-114.
[8] Willberg C, Duczek S, Vivarperez J M, et al. Simulation Methods for Guided Wave-Based Structural Health Monitoring: A Review[J]. Applied Mechanics Reviews, 2015, 67(1):1-20.
[9] Yang J, Chang F K. Detection of bolt loosening in C–C composite thermal protection panels: I. Diagnostic principle[J]. Smart Materials & Structures, 2006, 15(2):591-599.
[10]Yang J, Chang F K. Detection of bolt loosening in C–C composite thermal protection panels: II. Experimental verification[J]. Smart Materials & Structures, 2006, 15(2):591-599.
[11]Zagrai A, Doyle D, Arritt B. Embedded nonlinear ultrasonics for structural health monitoring of satellite joints[J]. Proc Spie, 2008, 6935:693505-693505-12.
[12] Vanhoenacker K, Schoukens J, Guillaume P, et al. The use of multisine excitations to characterise damage in structures[J]. Mechanical Systems & Signal Processing, 2004, 18(1):43-57.
[13] 胡海峰. 板状金属结构健康监测的非线性超声理论与关键技术研究[D]. 国防科学技术大学, 2011.
[14] Zhang Z, Liu M, Su Z, et al. Quantitative evaluation of residual torque of a loose bolt based on wave energy dissipation and vibro-acoustic modulation: A comparative study[J]. Journal of Sound & Vibration, 2016, 383:156-170.
[15] Clayton E H, Fasel T R, Todd M D, et al. Active ultrasonic joint integrity adjudication for real-time structural health monitoring[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2008, 6935:69350M-69350M-11.
[16] Fasel T R, Kennel M B, Todd M D, et al. Bolted Joint Damage Assessment Using Chaotic Probes[J]. 2008.
[17] Clayton E H, Fasel T R, Todd M D, et al. Active ultrasonic joint integrity adjudication for real-time structural health monitoring[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2008, 6935:69350M-69350M-11.
[18]Fasel T R, Kennel M B, Todd M D, et al. Bolted Joint Damage Assessment Using Chaotic Probes[J]. 2008.
[19] Nichols J M, Virgin L N, M.D. TODD, et al. ON THE USE OF ATTRACTOR DIMENSION AS A FEATURE IN STRUCTURAL HEALTH MONITORING[J]. Mechanical Systems & Signal Processing, 2003, 17(6):1305-1320.
[20]Torkamani S, Butcher E A, Todd M D, et al. Hyperchaotic probe for damage identification using nonlinear prediction error[J]. Mechanical Systems & Signal Processing, 2012, 29(5):457–473.
[21] Liu G, Mao Z, Todd M. Damage detection using transient trajectories in phase-space with extended random decrement technique under non-stationary excitations[J]. Smart Materials and Structures, 2016, 25(11): 115014.
[22] Todd M.D, Nichols J M, Pecora L M, et al. Vibration-based damage assessment utilizing state space geometry changes: local attractor variance ratio[J]. Smart Materials & Structures, 2001, 10(5):1000-1008(9).
[23] Nichols J M, Trickey S T, M.D. Todd, et al. Structural Health Monitoring Through Chaotic Interrogation[J]. Meccanica, 2003, 38(2):239-250.
[24]Torkamani S, Butcher E A, Todd M D, et al. Detection of system changes due to damage using a tuned hyperchaoticprobe[J]. Smart Materials and Structures, 2011, 20(2): 025006.
[25] 金虎, 君安, 士华. 混沌时间序列分析及其应用[M]. 武汉大学出版社, 2002. Jinhu, Junan, Shehua. Chaotic time series analysis and application [M]. Wuhan University Press, 2002.

PDF(1216 KB)

Accesses

Citation

Detail

段落导航
相关文章

/