原有运用Newton-Euler法建立的6-UPS (universal-prismatic-spherical) Stewart平台的经典闭环动力学模型存在一些不足,逐渐有学者从三个方面改进,即建模过程中考虑支杆绕自身轴线的旋转自由度,修正万向铰约束力矩的方向,应用平行轴定理计算各结构的转动惯量。本文在此基础上,考虑到上、下支杆关于下铰接点的力矩平衡属于不同情况,选择合理形式的动量矩定理建立支杆及上平台的欧拉方程,并结合前三点最终得到两种闭环动力学改进模型。使用相同的算例,比较改进模型和原模型的动态响应的不同,说明改进模型的必要性。从理论推导的角度来看,改进的模型比原模型更加合理、准确。
Abstract
The classical closed-loop dynamic model built with Newton-Euler approach for a 6-UPS Stewart platform has some shortcomings. It was improved by some scholars in three aspects including considering rotational DOF of rods around their axis, modifying restraint moment direction of universal joint and adopting the parallel axis theorem to calculate moments of inertia of each structure. Here, Euler equations for rods and upper platform were established according to reasonable forms of the momentum moment theorem, based on torque balance of upper rods about a lower hinge point and that of lower ones about the same hinge one being different cases. Finally, two different closed-loop improved dynamic models were deduced combining the above three aspects. Using the same example, the necessity of improving the model was explained by comparing dynamic responses of the improved models with those of the original model. It was shown that from the view point of theoretical derivation, the improved models are more reasonable and more accurate than the original one be.
关键词
6-UPS Stewart平台 /
改进动力学模型 /
Newton-Euler法
{{custom_keyword}} /
Key words
6-UPS Stewart platform /
improved dynamic model /
Newton-Euler approach
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Stewart D. A platform with six degrees of freedom[J]. Proceedings of the institution of mechanical engineers, 1965, 180(1): 371-386.
[2] Fichter E F. A Stewart platform-based manipulator: general theory and practical construction[J]. The International Journal of Robotics Research, 1986, 5(2): 157-182.
[3]Do W Q D, Yang D C H. Inverse dynamic analysis and simulation of a platform type of robot[J]. Journal of Robotic Systems, 1988, 5(3): 209-227.
[4] Dasgupta B, Mruthyunjaya T S. Closed-form dynamic equations of the general Stewart platform through the Newton–Euler approach[J]. Mechanism and machine theory, 1998, 33(7): 993-1012.
[5]Dasgupta B, Mruthyunjaya T S. A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator[J]. Mechanism and machine Theory, 1998, 33(8): 1135-1152.
[6] Lee K M, Shah D K. Dynamic analysis of a three-degrees-of-freedom in-parallel actuated manipulator[J]. IEEE Journal on Robotics and Automation, 1988, 4(3): 361-367.
[7]Yang J, Geng Z J. Closed form forward kinematics solution to a class of hexapod robots[J]. IEEE Transactions on Robotics and Automation, 1998, 14(3): 503-508.
[8] Wang J, Gosselin C M. A new approach for the dynamic analysis of parallel manipulators[J]. Multibody System Dynamics, 1998, 2(3): 317-334.
[9]Tsai L W. Solving the inverse dynamics of a Stewart-Goughmanipulator by the principle of virtual work[J]. Journal of Mechanical design, 2000, 122(1): 3-9.
[10] Liu M J, Li C X, Li C N. Dynamics analysis of the Gough-Stewart platform manipulator[J]. IEEE Transactions on Robotics and Automation, 2000, 16(1): 94-98.
[11]罗波,李伟鹏,黄海.基于Stewart平台的大柔性空间桁架结构振动控制[J].振动与冲击, 2012,31(23):148-153.
Luo Bo,LiWeipeng,Huang Hai. Vibration control of a large flexible space truss using a Stewart platform manipulator[J]. Journal of vibration and shock,2012,31(23):148-153.
[12] 李乔博,王超新,黄修长等. 基于Stewart平台微振动主动控制分析与实验[J].噪声与振动控制. 2016,36(3):214-218.
LiQiaobo , WangChaoxin , HuangXiuchangetal. Analysis and Experiment of Micro-vibration Active ControlBased on a Stewart Platform[J].Noise and vibration control,2016,36(3):214-218.
[13] 李长春,延皓,张金英等. 一种改进的6自由度运动模拟器逆动力学模型 [J].兵工学报, 2009,30(4):446-450.
Li Changchun,Yanhao,Zhangjinyinetal. An Improved Inverse Dynamics Model of 6-DOF Motion Simulator[J]. ACTA ARMAMENTARII, 2009,30(4):446-450.
[14] SW. Fu, Y. Yao. Comments on “A Newton-Euler formulation for the inverse dynamics of Stewart platform manipulator” by B. Dasgupta and T.S. Mruthyunjaya [Mech. Mach. Theory 33 (1998) 1135-1152] [J], Mechanism and Machine Theory,2007,42:1668-1671.
[15] Vakil M, Pendar H, Zohoor H. Comments to the:“Closed-form dynamic equations of the general Stewart platform through the Newton–Euler approach” and “A Newton–Euler formulation for the inverse dynamics of the Stewart platform manipulator”[J]. Mechanism and Machine Theory, 2008,43(10): 1349-1351.
[16]郭洪波.液压驱动六自由度平台的动力学建模与控制[D].哈尔滨: 哈尔滨工业大学, 2006.
HongboGuo. Dynamic modeling and control of hydraulically driven 6-DOFplatform[D].Harbin Institute of Technology,2006.
[17] Pedrammehr S, Mahboubkhah M, Khani N. Improved dynamic equations for the generally configured Stewart platform manipulator[J]. Journal of mechanical science and technology, 2012, 26(3): 711-721.
[18] Wittenburg J. Dynamics of multibody systems [M]. Springer Science & Business Media, 2007.
[19] He Z, Song X, Xue D. Comments to the:“Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach” and “A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator”[J]. Mechanism and Machine Theory, 2016, 102: 229-231.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}