Failure modes for rotary ultrasonic motors under shock environment
SUN Dong1, WANG Xin-jie1,WANG Jiong1,CHEN Chao2,TANG Yu-juan3
Author information+
1. College of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2. School of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
3. College of Smart Science and Control Engineering, Jinling College of Technology, Nanjing 211169, China
It is significant to study failure modes of ultrasonic motors applied in weapon systems under shock environment. The possible failure modes of key components in ultrasonic motors include fracture and delamination of piezoelectric ceramics, drift of working frequency due to plastic deformation of the stator, and reduction or disappearance of pre-pressure due to stator and rotor’ plastic deformation and bolt-loosening in pre-tightening force mechanisms. The stress states and stress wave transmission process of each component of the motors were analyzed with dynamic simulation. It was shown that the pre-tightening force mechanism is the part to be damaged most easily in the whole structure of a motor. An air gun was used to conduct the impact-overload tests for an ultrasonic motor. When the impact load reached 26546g, bolts loosened, the pre-tightening force mechanism became invalid, but other parts had no obvious damages or deformations. The results provided a theoretical basis and improvement measures for the application of ultrasonic motors in weapon systems under shock environment.
SUN Dong1, WANG Xin-jie1,WANG Jiong1,CHEN Chao2,TANG Yu-juan3.
Failure modes for rotary ultrasonic motors under shock environment[J]. Journal of Vibration and Shock, 2018, 37(9): 32-36
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵淳生. 超声电机技术与应用= Ultrasonic Motors: Technologies and Applications:英文[M].科学出版社, 2010.
[2] Koc B, Basaran D, Akin T, et al. Design of a piezoelectric ultrasonic motor for microrobotic application, in ‘[C]//Int. Conf. Mechatronic Design and Modeling, Turkey. 2002: 205-219.
[3] Uchino K. Piezoelectric actuators 2006[J]. Journal of Electroceramics, 2008, 20(3):301-311.
[4] Sherrit S. Smart material/actuator needs in extreme environments in space[J]. Proc Spie, 2005, 5761(4):335-346.
[5] 唐玉娟, 王新杰, 王 炅. 引信安全系统的直线超声电机设计与试验研究[J]. 兵工学报, 2014, 35(1):27-34.
TANG Yu-juan,WANG Xin-jie,WANGJiong. Design and Experiment of a Linear Ultrasonic Motor for Fuze Safety System[J]. Acta Armamentarii, 2014, 35(1):27-34.
[6] 贺 奔. 超声电机真空、高低温试验及温度适应性电机设计[D]. 南京航空航天大学, 2012.
[7] 芦 丹, 郑伟, 赵淳生. 超声电机真空环境试验研究[J]. 压电与声光, 2009, 31(2):213-214.
LU Dan, ZHENG Wei, ZHAO Chun-sheng.The experimental research of ultrasonic motor in the vacuum environment[J]. Lu D, Zheng W, Zhao C S. The experimental research of ultrasonic motor in the vacuum environment[J]. piezoelectrics & Acoustooptics, 2009, 31(2):213-206.
[8] 任金华, 陈 超. 高过载环境下旋转型行波超声电机的动力学分析与设计[C]// 全国振动利用工程学术会议暨第四次全国超声电机技术研讨会. 2012.
REN Jin-hua, CHEN Chao.Dynamic analysis and design of the travelling wave type rotary ultrasonic motors under overload environment[C]//National Symposium on Vibration Engineering and Fourth National Ultrasonic Motor Technology Seminar. 2012
[9] 陈 超, 任金华, 石明友, 等.旋转行波超声电机的冲击动力学模拟及实验[J]. 振动. 测试与诊断, 2014, 34(1): 8-14.
Chen Chao, Ren Jin-hua, Shi Ming-you, et al. Impact dynamics simulation and experiment analysis of traveling wave type rotary ultrasonic motor[J]. Journal of Vibration Measurement & Diagnosis, 2014, 34(1): 8-14.
[10] 唐玉娟,王 炅. 典型引信环境力对压电驱动器的影响研究[J]. 振动与冲击, 2013, 32(19):170-175.
Tang Yu-juan, Wang Jiong. Influence of typically environmental force of a fuze on a piezoelectric actuator[J]. Journal of Vibration & Shock, 2013, 32(19):170-175.
[11]石云波, 王昊宇, 刘 俊,等. 高过载压电驱动器设计与试验[J]. 压电与声光, 2007, 29(5):530-532.
Shi Y B, Wang H Y, Liu J, et al. Design and experiment for high overloadingpiezoceramic actuator[J]. Piezoelectrics & Acoustooptics, 2007, 29(5):530-532.
[12] 余同希. 冲击动力学[M]. 清华大学出版社, 2011.
[13] 王 亮. 压电智能复合材料/结构界面断裂研究[D]. 大连理工大学, 2013.
[14] Furuya S I, Maruhashi T, Izuno Y, et al. Load-adaptive frequency tracking control implementation of two-phase resonant inverter for ultrasonic motor[J]. IEEE Transactions on Power Electronics, 1992, 7(3):542-550.
[15] 赵向东, 赵淳生. 预压力对超声电机输出特性影响的实验研究[J]. 力学与实践, 2002, 24(4):46-48.
Zhao Xiang-dong, Zhao Chun-sheng. Effects of preload on the output characteristics of ultrasonic motors[J]. Mechanics & Engineering, 2002, 24(4):46-48.
[16] 王光庆, 沈润杰, 郭吉丰. 预压力对超声波电机特性的影响研究[J]. 浙江大学学报工学版, 2007, 41(3):436-440.
Wang Guang-qing, Shen Run-jie, Guo Ji-feng. Researches on effects to ultrasonic motor's performance of preload[J]. Journal of Zhejiang University: Engineering Science, 2007,41(3):436-440.
[17] 陈 超, 赵淳生. 柔性转子对行波超声波电动机性能的影响[J]. 机械工程学报, 2008, 44(3):152-159.
Chen Chao, ZHAO Chun-sheng. Effect of flexible rotor on performance of traveling wave type ultrasonic motor[J]. Journal of Mechanical Engineering, 2008, 44(3):152-159.
[18] 冯万里. 纳米复合PZT压电陶瓷的制备及其力学性能研究[D]. 哈尔滨工程大学, 2007.
[19] 肖舒恒, 顾伯勤. 碟簧螺栓连接系统冲击响应分析[J]. 振动与冲击, 2013, 32(18):101-104.
Xiao Shu-huan, Gu Bo-qin. Shock response analysis for a bolted connection system with disk spring[J]. Journal of Vibration & Shock, 2013, 32(18):101-104.