随着阵列单元数目增多,用传统有限元动力学分析方法分析阵列可展结构计算量十分巨大,甚至变得不可能。依据阵列可展结构由单元机构规律性组合而成的特点,针对剪式单元阵列可展结构提出了一种规范化动力学分析方法(简称规范法)。此方法将单元机构的叠加节点自由度与内部节点自由度分开,从而实现单元特性矩阵的首尾循环相加得到整体结构的刚度矩阵和质量矩阵。以55剪式单元平面阵列可展结构为例,采用规范法分析其固有频率和动态响应情况。结果发现:当展开角度接近于0°和180°时,固有频率迅速减小至0 Hz。当施加外载时,无阻尼、小阻尼和过阻尼情况下的动态响应分别为周期性振动、最大振幅衰减的周期性振动和无振动。可以得出:可展结构在0°和180°附近结构不稳定,其安全工作角度为20°到160°之间。阻尼适当增大可以有效减小振动。规范法提高了建模效率,并且便于规范性编程计算。
Abstract
With increase in array elements, the computation amount to analyze an array deployable structure is huge based on the conventional FEM dynamic analysis method, even the computation becomes impossible. The specification dynamic method (SDM) for a planar linear array deployable structure with scissor-like elements was proposed according to its feature of it being regularly composed of element mechanisms. The superposition node DOFs among element mechanisms and internal node DOFs were separated with this method to realize element characteristic matrices added end to end circularly, and obtain the global stiffness matrix and mass one of an array deployable structure. Taking a 55 planar linear array deployable structure with scissor-like elements as an example, its natural frequencies and dynamic responses were analyzed with the SDM. The results showed that the structure’s natural frequency decreases to 0 Hz rapidly when its deployable angle is close to 0 or 180; when external loads are applied, the dynamic responses of the system are periodic vibration, periodic vibration with the maximum amplitude attenuated, and no vibration, respectively under undamped, underdamped and overdamped conditions; the structure with the deployable angle close to 0 or 180 is unstable, the safe range of the deployable angle should be 20 to 160; in addition, appropriately increasing damping can reduce the structure’s vibration effectively; the SDM can be used to improve modeling efficiency, and it is easy to be regularly programmed for computation.
关键词
机械振动学 /
剪式单元 /
阵列可展结构 /
动力学 /
规范法
{{custom_keyword}} /
Key words
mechanical vibration theory /
scissor-like element /
array deployable structure /
dynamics /
specification dy-namic method (SDM)
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Langbecker T J. Kinematic analysis of deployable scissor structures[J]. International Journal of Space Struc-tures,1999,14(1):1-15.DOI:10.1260/0266351991494650.
[2] Cherniavsky A G, Gulyayev V I, Gaidaichuk V V, et al. Large Deployable Space Antennas Based on Usage of Polygonal Pantograph[J]. Journal of Aero-space Engineering, 2005, 18(3):139-145.DOI: 10.1061/(ASCE)0893-1321(2005)18:3(139).
[3] Tagawa H, Sugiura N, Kodama S. Structural Analysis of Deployable Structure with Scissor-like-element in Architectural Design Class[C]// IABSE Symposium Report. IABSE Conference Nara, Elegance in Struc-tures, pp.2015:1-8(8)
[4] 陈向阳, 关富玲, 陈务军,等. 复杂剪式铰结构的几何分析和设计[J]. 空间结构, 1998(1):45-51.
CHENXiangyang,GUAN Fuling,CHEN Wujun,et al.Geometry Designand Analysisof Complex Panto-graphStructures[J]. Spatial Structures, 1998(1):45-51.
[5] 宋依洁, 熊海贝, 卿紫菲,等. 一种新型可展结构的探索[J]. 结构工程师, 2015, 31(5):48-53.DOI:10.3969/j.issn.1005-0159.2015.05.009.
SONG Yijie,XIONG Haibei,QING Zifei,et al.Design and Application of a New Deployable Structure[J]. Structural Engi-neers,2015,31(5):48-53.DOI:10.3969/j.issn.1005-0159.2015.05.009.
[6] 李庆营. 剪式铰可展结构力学性能分析[D]. 南京:东南大学, 2012.
LI Qingying.MechanicalProperty of Pantographic Deployable Struc-tures[D].Nanjing:SoutheastUniversity,2012.
[7] 陈耀. 新型对称可展结构的形态及展开过程分析与应用研究[D]. 南京:东南大学, 2014.
CHEN Yao.Morphology and kinematic folding analysis and application research on novel sym-metric deployable structures[D]. Nanjing:Southeast University,2014.
[8] Zhao J, Feng Z, Chu F, et al. Chapter 11–Mechanism Theory and Application of Deployable Structures Based on Scissor-Like Elements[J]. Advanced Theory of Constraint & Motion Analysis for Robot Mechan-isms,2014:349-366.DOI:10.1016/B978-0-12-420162-0.00011-4.
[9] Sun Y, Wang S, Mills J K. Kinematics and dynamics of deployable structures with scissor-like-elements based on screw theory[J]. Chinese Journal of Me-chanical Engineering, 2014, 27(4):655-662.DOI:10.3901/CJME.2014.0519.098.
[10] 纪斌, 王怀磊, 金栋平. 非对称平面剪铰结构展开过程分析与仿真[J]. 工程力学, 2013(7):7-13.DOI:10.6052/j.issn.1000-4750.2012.03.0154.
JI Bin, WANGHuailei, JINDongping. Analysis and simulation of the deployment process for asymmetric planar scissor structures[J]. Engineering Mechanics, 2013,30(7):7-13.DOI:10.6052/j.issn.1000-4750.2012.03.0154.
[11] 孙宏图, 袁茹, 王三民. 正方形可展机构的运动学与动力学特性研究[J]. 西北工业大学学报, 2013(4):620-623.DOI:10.3969/j.issn.1000-2758.2013.04.027.
SUNHongtu, YUANRu, WANGSanmin. Kinematics and Dynamics Characteristics of Square Developable Structure[J]. Journal of Northwestern PolytechnicalUniversity, 2013.DOI:10.3969/j.issn.1000-2758.2013.04.027.
[12] Shan W. Computer analysis of foldable structures[J]. Computers & Structures, 1992, 42(42):903-912.DOI:10.1016/0045-7949(92)90102-6
[13] 杨毅, 丁希仑. 剪式单元可展机构静力学分析与拓扑优化设计[J]. 中国机械工程, 2010(2):184-189.
YANG Yi,DINGXilun.Analysis and Topology Opti-mization of Deployable Mechanism Based on Pantograph[J]. ZhongguoJixieGongcheng/China Mechanical Engineering, 2010, 21(2):184-189.
[14] 刘国林, 王三民, 尚鹏. 剪式机构阵列可展结构的静力学分析方法与应用研究[J]. 中国机械工程, 2014,25(4).DOI:10.3969/j.issn.1004-132X.2014.04.007.
LIUGuolin, WANGSanmin,SHANGPeng.Static Analysis Method and Application Research of Line Array Deployable Structures Based on SLE[J]. ZhongguoJixieGongcheng/China Mechanical Engi-neering, 2014, 25(4):461-466. DOI:10.3969/j.issn.1004-132X.2014.04.007.
[15] 戴云景, 方有亮. 可展索-桁架结构的有限元分析[J]. 科学技术与工程, 2007, 7(4):538-541.DOI:10.3969/j.issn.1671-1815.2007.04.029.
DAIYunjing, FANGYouliang. Finite Element Analysis of Deployable Cable-truss Structures[J]. Science Technology & Engineering, 2007. DOI:10.3969/j.issn.1671-1815.2007.04.029.
[16] 刘树青, 王兴松, 朱正龙. 一种剪式可展结构设计与动力学分析[J]. 机械设计, 2011, 28(10):55-60.
LIUShuqing, WANGXingsong, ZHUZhenglong. De-sign and dynamic analysis of a scissor deployable structure[J]. Journal of Machine Design, 2011, 28(10):55-60.
[17] 曾攀. 有限元分析及应用[M]. 北京:清华大学出版社, 2004.
ZENG Pan.Finite element analysis and applica-tions[M]. Beijing:Tsinghua university press.
[18] 王莉.几种铝合金的力学性能及阻尼特性[J].轻合金加工技术,2005,33(12):48-50.DOI:10.3969/j.issn.1007-7235.2005.12.013.
WANG Li. Influence of aging on mechanical proper-ties and damping behavior of several Aluminiumal-loy[J]. Light alloy fabrication technolo-gy,2005,33(12):48-50.DOI:10.3969/j.issn.1007-7235.2005.12.013.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}