针对同时含有非线性刚度、非线性阻尼的振动系统,提出了两类参数识别方法。第一类方法是基于非线性振动系统中的振幅跳跃现象,通过跳跃点的测量得出振幅跳跃点的激励频率和幅值,用谐波平衡法识别出非线性振动系统的非线性刚度、非线性阻尼参数。第二类方法是涉及时域响应,通过希尔伯特变换获得非线性系统自由振动的响应幅值和相角,然后结合双非线性振动系统在瞬态激励下的解析解,获得系统的非线性刚度和阻尼。最后以非线性刚度非线性阻尼隔振系统为例,通过数值模拟对给出的两类参数识别方法加以验证,并对结果进行较比,识别参数相吻合。可以为实验条件下,含非线性刚度、非线性阻尼隔振系统的参数识别提供理论指导。
Abstract
Aiming at vibration systems with nonlinear stiffness and nonlinear damping, two parametric identification methods were proposed. The first method was based on vibration amplitude jumping phenomenon in a nonlinear vibration system, the system was excited with a swept-sine excitation, frequency and amplitude of the amplitude-jumping point’s displacement were obtained through measurement, then the harmonic balance method was used to recognize the nonlinear vibration system’s stiffness and damping. The second method was involved in the time domain transient response of a nonlinear system, Hilbert transformation was used to gain the free vibration response’s amplitude and phase angle of the system, then combining with the analytical solution to the system excited with a transient excitation, the system’s nonlinear stiffness and nonlinear damping were recognized. Taking a vibration isolation system with nonlinear stiffness and nonlinear damping as an example, the two methods mentioned above were verified through numerical simulation. It was shown that the parametric recognition results using these two methods agree well each other. The study results provided a theoretical guide for parametric identification of vibration isolation systems with nonlinear stiffness and nonlinear damping.
关键词
参数识别 /
非线性刚度 /
非线性阻尼 /
跳跃现象 /
希尔伯特变换
{{custom_keyword}} /
Key words
parametric recognition /
nonlinear stiffness /
nonlinear damping /
jumping phenomenon /
Hilbert transformation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 傅志方. 振动模态分析与参数辨识[M]. 北京: 机械工业出版社,1990.
[2] 李晶, 曹登庆. 基于解析模态分解和希尔伯特变换的模态参数辨识新方法[J]. 振动与冲击,2016, 35(1): 34-39.
LI Jing, CAO Deng-qing. A new method for modal parameter identification based on analytical modal decompositon and Hillbert transformation[J].Journal of Vibration and Shock, 2016, 35(1): 34-39.
[3] 杨凯,于开平. 基于信号时频分析理论识别时变模态参数实验[J]. 振动、测试与诊断, 2015, 35(5): 880-884.
YANG Kai,YU Kai-ping. Experiment on time-varying modal parameter identification based on signal time-frequency analysis theory [J]. Journal of Vibration , measurement and Diagnosis, 2015, 35(5): 880-884.
[4] 尹帮辉, 王敏庆. 结构振动阻尼测试的衰减法研究[J]. 振动与冲击,2014,33(4):100-106
LI Hui, SUN Wei. Damping identification for stiffness -nonlinearity structure[J]. Journal of Vibration and Shock, 2014,33(4):100-106
[5] 孙伟, 齐飞. 基于自由振动衰减信号包络线法辨识硬涂层复合结构阻尼特性[J]. 振动与冲击,2013, 32(12): 50-54.
SUN Wei, QI Fei. Estimating system damping for a hard coating composite structure based on envelope of a free damped vibration signal[J]. Journal of Vibration and Shock, 2013, 32(12): 50-54.
[6] Carrella A, Brennan MJ. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2009, 322(4-5):707-717.
[7]Carrella A, Brennan MJ. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness [J]. International Journal of Mechanical Sciences, 2012, 55(1): 22-29.
[8] Brennan MJ, Carrella A. On the jump-up and jump-down frequencies of the Duffing oscillator[J]. Journal of Sound and Vibration, 2008, 318(4): 1250-1261.
[9] Brosch T, Neumann H. A comparison of the effects of nonlinear damping on the free vibration of a single-degree-of-freedom system[J]. Journal of Vibration and Acoustics, 2012, 134(1): 81-84
[10] TANG Bin, Brennan MJ. A comparison of two nonlinear damping mechanism in a vibration isolator[J]. Journal of Sound and Vibration, 2013, 332(3): 510-520.
[11] TANG Bin, Brennan MJ. Experimental characterization of a nonlinear vibration absorber using free vibration [J]. Journal of Sound and Vibration, 2016, 367(1): 159-169.
[12]Feldman M. Hilbert transform in vibration analysis [J]. Mechanical Systems and Signal Processing, 2011, 25(1): 735-802.
[13] Feldman M. Non-linear system vibration analysis using Hilbert Transform I: Free vibration analysis method FREEVIB[J].Mechanical Systems and Signal Processing,1994, 8(2): 119-127.
[14] 李晖, 孙伟. 具有刚度非线性的结构系统阻尼参数测试[J]. 振动与冲击,2015, 34(9): 131-135.
LI Hui, SUN Wei. Damping identification for stiffness -nonlinearity structure[J]. Journal of Vibration and Shock, 2015, 34(9): 131-135.
[15] 邓杨, 彭志科. 基于参数化时频分析的非线性振动系统参数辨识[J]. 力学学报,2013, 45(6): 992-996.
DENG Yang, Peng Zhi-ke. Identification of nonlinear vibration systems based on parametric TFA [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 992-996.
[16] TANG Bin, Brennan MJ. Using Nonlinear Jumps to Estimate Cubic Stiffness Nonlinearity: An Experimental Study[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 2015,0(0):1-7.
[17] Roszaidi R, Brennan MJ. Exploiting knowledge of jump-up and jump-down frequencies to determine the parameters of a Duffing oscillator[J]. Communication in Nonlinear Science Numerical Simulation, 2016, 37(1): 282-291.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}