压缩波束形成声源识别的改进研究

张晋源 1,杨 洋 1,褚志刚 2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (1) : 195-199.

PDF(1896 KB)
PDF(1896 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (1) : 195-199.
论文

压缩波束形成声源识别的改进研究

  • 张晋源 1,杨 洋 1,褚志刚 2
作者信息 +

Improvement of compressive beamforming acoustic source identification

  • ZHANG Jinyuan1, YANG Yang1, CHU Zhigang2
Author information +
文章历史 +

摘要

凭借空间分辨率高、旁瓣衰减能力强等优势,压缩波束形成声源识别算法备受关注。传统方法直接最小化声源分布向量的 范数,重构声源分布与真实声源分布之间存在一定偏差,声源无法被直接准确量化。为改善该问题,本文给出迭代重加权 范数最小化方法,其迭代求解声源分布,且每次迭代中对声源分布向量进行加权。仿真及试验结果均证明:所给方法能有效降低传统方法的重构偏差,能直接用主瓣峰值准确量化声源强度,且空间分辨率更高、旁瓣衰减能力更强。

Abstract

Compressive beamforming acoustic source identification algorithm receives much attention due to its high spatial resolution and strong side-lobe attenuation ability.The conventional method directly minimizes the  l-norm of the acoustic source distribution vector to reconstruct the acoustic source distribution.There is a certain deviation between the reconstructed acoustic source distribution and the actual one to make acoustic sources not be directly and accurately quantified.To solve this problem, an iterative reweighted  l-norm minimization method was proposed.With it, the acoustic source distribution was solved iteratively.The acoustic source distribution vector was weighted in per iteration.Simulation and test results demonstrated that the proposed method can effectively reduce the reconstruction deviation of the conventional method, and directly and correctly quantify the acoustic source intensity with main-lobe peaks; it has higher spatial resolution and stronger side-lobe attenuation ability.

关键词

声源识别 / 压缩波束形成 / 改进 / 迭代重加权 范数最小化

Key words

 acoustic source identification / compressive beamforming / improvement / iterative reweighed -norm minimization

引用本文

导出引用
张晋源 1,杨 洋 1,褚志刚 2. 压缩波束形成声源识别的改进研究[J]. 振动与冲击, 2019, 38(1): 195-199
ZHANG Jinyuan1, YANG Yang1, CHU Zhigang2. Improvement of compressive beamforming acoustic source identification[J]. Journal of Vibration and Shock, 2019, 38(1): 195-199

参考文献

[1] K.B. Ginn, K. Haddad. Noise source identification techniques: simple to advanced applications [C]// Proceedings of the Acoustics 2012, Nantes, France, 23-27 April, 2012: 1781-1786.
[2] 褚志刚, 段云炀, 沈林邦, 等. 函数波束形成声源识别性能分析及应用[J]. 机械工程学报, 2017, 53(4): 67-76.
CHU Zhigang, DUAN Yunyang, SHEN Linbang, et al. Performance analysis and application of functional beamforming sound source identification [J]. Journal of Mechanical Engineering, 2017, 53(4): 67-76.
[3] T.F. Brooks, W.M. Humphreys. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) determined from phased microphone arrays [J]. Journal of Sound and Vibration, 2006, 294(4-5): 856-879.
[4] K. Ehrenfried, L. Koop. Comparison of iterative deconvolution algorithms for the mapping of acoustic sources [J]. AIAA Journal, 2007, 45(7): 1584-1595.
[5] Z.G. Chu, Y. Yang. Comparison of deconvolution methods for the visualization of acoustic sources based on cross-spectral imaging function beamforming [J]. Mechanical Systems and Signal Processing, 2014, 48(1): 404-422.
[6] G.F. Edelmann, C.F. Gaumond. Beamforming using compressive sensing [J]. Journal of the Acoustical Society of America, 2011, 130(4): EL232-EL237.
[7] A. Xenaki, P. Gerstoft, K. Mosegaard. Compressive beamforming [J]. Journal of the Acoustical Society of America, 2014, 136(1): 260-271.
[8] Q.K. Wei, W.J. Yu, X. Huang. Compressive sensing based beamforming and its application in aeroacoustic experiment [C]// 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 16-20 June, 2014, AIAA Paper 2014-2918.
[9] 宁方立, 卫金刚, 刘勇, 等. 压缩感知声源定位方法研究[J]. 机械工程学报, 2016, 52(19): 42-52.
NING Fangli, WEI Jingang, LIU Yong, et al. Study on sound sources localization using compressive sensing [J]. Journal of Mechanical Engineering, 2016, 52(19): 42-52.
[10] S. Boyd, L. Vandenberghe. Convex Optimization [M]. Cambridge: Cambridge University Press, 2004: 1-684.
[11] M. Grant, S. Boyd. CVX: MATLAB software for disciplined convex programming, version 2.1. http://cvxr.com/cvx.
[12] D.R. Hunter, K. Lange. A tutorial on MM algorithms [J]. American Statistician, 2004, 58(1): 30-37.
[13] E.J. Candès, M.B. Wakin, S.P. Boyd. Enhancing sparsity by reweighted   minimization [J]. Journal of Fourier Analysis and Application, 2008, 14(5-6): 877-905.

PDF(1896 KB)

Accesses

Citation

Detail

段落导航
相关文章

/