为了研究钢筋混凝土板的材料和结构参数对声发射关键参数的影响规律,设计制作了9个板试件,并进行了断铅试验和声发射测试。利用自制断铅装置进行断铅试验,确定了适用于钢筋混凝土板的门槛值和峰值鉴别时间等声发射检测参数的设置方法。通过断铅试验和声发射测试,研究了混凝土龄期、板厚、混凝土强度等级、粗骨料最大粒径和配筋等参数对声发射波速和振幅衰减的影响规律。结果表明,板厚和混凝土强度等级是影响声发射波速和振幅衰减的重要因素。波速随着混凝土板厚的增加而减小,随着混凝土强度等级的提高而增大;而板厚越大,混凝土强度等级越低,振幅的衰减越大。骨料最大粒径和配筋对声发射波速和振幅衰减影响较小。此外,还给出了振幅衰减值与传播距离的关系式,以及振幅衰减限值的建议值。
Abstract
To study influences of material and structural parameters of RC slabs on wave velocity and amplitude attenuation of acoustic emission (AE), pencil lead breaks (PLB) and AE tests of 9 RC slab specimens were conducted.Using a self-made PLB device for PLB tests, the AE detecting parameters including threshold, peak identification time, identification of impact time, and impact locking time being applicable to RC slabs were determined.Through PLB and AE tests, the influence laws of RC age, thickness, concrete strength grade, coarse aggregate maximum particle size and reinforcement on AE wave velocity and amplitude attenuation were studied.The results showed that thickness and concrete strength grade are important factors to affect AE wave velocity and amplitude attenuation; AE wave velocity decreases with increase in concrete thickness, and it increases with increase in concrete strength grade; the larger the thickness and the lower the concrete strength grade, the bigger the amplitude attenuation; coarse aggregate maximum particle size and reinforcement ratio affect AE amplitude attenuation and wave velocity more weakly; the relation expression between amplitude attenuation value and propagation distance is derived, and the threshold value for amplitude attenuation is recommended.
关键词
钢筋混凝土板 /
无损检测 /
声发射 /
波速 /
振幅衰减
{{custom_keyword}} /
Key words
Reinforced concrete slab /
nondestructive testing /
acoustic emission /
velocity /
amplitude attenuation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 胜山邦久.声发射(AE)技术的应用[M].冯夏庭,译.北京:冶金工业出版社,1996.
Katsuyama Bonjour. Application of Acoustic Emission (AE) [M]. Feng Xia-ting, translation. Metallurgical Industry Press, 1996.
[2] Kentaro Ohno, Masayasu Ohtsu. Crack Classification in Concrete Based on Acoustic Emission [J]. Construction and Building Materials, 2010, 24: 2339-2346.
[3] Norazura M B, Pullin R, Holford K M, et al. A practical investigation into acoustic wave propagation in concrete structures[J]. Advanced Materials Research,2006,13-14: 205-212.
[4] Goszczyńska B, Świt G, Trąmpczyński W. Analysis of the microcracking process with the Acoustic Emission method with respect to the service life of reinforced concrete structures with the example of the RC beams[J]. Bulletin of the Polish Academy of Sciences Technical Sciences,2015,63(1):55-63.
[5] 陈兵,张东,吴科如. 混凝土梁声发射特性试验研究[J]. 建筑材料学报,1998,1(4):315-319.
CHEN Bing, ZHANG Dong, WU Ke-ru. Experimental Study on Acoustic Emission Characteristics of Concrete Beam[J]. Journal of Building Materials, 1998, 1(4): 315-319.
[6] 李旭,霍林生,李宏男. 基于声发射的钢筋混凝土梁承载能力评估[J].振动与冲击,2013,32(5):6-25.
LI Xu, HUO Lin-sheng, LI Hong-nan. Evaluation of bearing capacity of reinforced concrete beams based on acoustic emission[J]. Journal of vibration and shock, 2013,32(5):6-25.
[7] 纪洪广,侯昭飞,张磊,等. 混凝土材料声发射信号的频率特征及其与强度参量的相关性试验研究[J].应用声学,2011,30(2):112-117.
Ji Hong-guang, Hou Zhao-fei, Zhang Lei, et al. Experimental study on the frequency characteristics of acoustic emission in concrete material and its dependences on strength parameters [J]. Journal of Applied Acoustics,2011, 30(2): 112-117.
[8] 门进杰,朱乐,李欢,等. 钢筋混凝土梁声发射检测参数设置和受力特征试验研究[J].西安建筑科技大学学报(自然科学版),2015,47(6):793-798.
Men Jin-jie, Zhu Le, Li Huan, et al. Experimental research on the acoustic emission detecting parameters and mechanical behaviors for reinforced concrete structure. Journal of Xi’an University of Architecture & Technology(Natural Science Edition), 2015, 47(6): 793-798.
[9] 杨明纬. 声发射检测[M]. 机械工业出版社,2005.
Yang Ming-wei. Acoustic Emission Detection [M]. Machinery Industry Press, 2005.
[10] 中华人民共和国国家标准. GB/T18182-2012金属压力容器声发射检测及结果评价方法[S].北京:中国标准出版社,2012.
National Standard of the People’s Republic of China. GB/T18182-2012 Acoustic emission examination and evaluation of metallic pressure vessels[S]. Beijing: Standards Press of China, 2012.
[11] ASTM E976-15, Standard Guide for Determining the Reproducibility of Acoustic Emission Sensor Response[S]. West Conshohocken: ASTM International, PA, 2015.
[12] 刘瑞江,张业旺,闻崇炜,等.正交试验设计和分析方法研究[J].实验技术与管理,2010(9):52-55.
LIU Rui-jiang, ZHANG Ye-wang, WEN Chong-wei, et al. Research on orthogonal test design and analysis method[J]. Experimental Technology and Management, 2010(9): 52-55.
[13] 郭穗勋,黄榕波. 正交试验层次分析法[J].大学数学,2004,20(1):114-117.
GUO Sui-xun, HUANG Rong-bo. Orthogonal Test Analytic Hierarchy Process[J]. University Mathematics, 2004, 20(1): 114-117.
[14] Philippidis T P, Aggelis D G. Experimental study of wave dispersion and attenuation in concrete[J]. Ultrasonics, 2005, 43(7):584-595.
[15] Chang T P, Lin H C, Chang W T, et al. Engineering properties of lightweight aggregate concrete assessed by stress wave propagation methods[J]. Cement & Concrete Composites, 2006, 28(1):57-68.
[16] 胡少伟,卫聪杰,明攀. 复杂结构体系中声发射传播与能量衰减特性试验研究[J].水利水电技术,2017, 48(5): 120-127.
HU Shao-wei, WEI Cong-jie, MING Pan. Experimental study on acoustic emission signal propagation property and energy attenuation characteristics in complicated structural system[J]. Water Resources and Hydropower Engineering, 2017, 48(5): 120-127.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}