本文对铝合金薄壁构件进行振动时效(VSR)实验研究,观察时效对材料表面的影响。通过X-ray表面应力测试、硬度测试和TEM电镜实验,对材料表面特性中的应力分布、相区状况、位错和显微硬度进行了分析,实验结果表明:VSR可使构件加工表面微屈服而造成应力松弛,在30 min、60 min的时效时间里,表面应力幅度分别下降了22%和32%。同时,发现相区内晶粒得到细化,且不同状态下晶界处的位错密度也明显不同,这说明振动交变应力造成了构件表面材料的微观形变,进而阐述了应力松弛的机理和材料显微硬度增长的原因。分析认为VSR对薄壁构件既消减了表面应力峰值,又强化了表面硬度,这对提高材料表面的抗变形能力有利。
Abstract
The vibration stress relief (VSR) tests were conducted for 7075 Al alloy thin-walled components to observe VSR effects on material surface.Through surface stress measuring with X-ray diffraction (XRD), hardness tests and TEM ones, material surface features including stress distribution, phase domain state, dislocation and micro-hardness were analyzed.The test results showed that VSR can make component machined surface micro-yield and have stress relaxation, the surface stress amplitude decreases 22% and 32%, respectively in 30 min and 60 min; crystal particles are refined in phase domain and the dislocation density at grain boundary under different states is obviously different, it means the vibration alternating stress produced due to VSR makes component surface material have micro-strain, and then the mechanism of stress relaxation and the reason for increase in material micro-hardness are presented; VSR not only reduces thin-walled component surface material’s stress peak value, but also enhances the surface material hardness, this is beneficial to improve the anti-deformation ability of component surface material.
关键词
振动时效 /
铝合金 /
薄壁构件 /
应力测试 /
应力松弛
{{custom_keyword}} /
Key words
VSR /
Al alloy /
thin-walled component /
stress measurement /
stress relaxation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曹慧. 管类环焊缝热时效和振动时效去除焊接应力对比研究[J]. 航天制造技术, 2014, 10(5):31-34.
CAO Hui. Contrast Research of Heat Ageing and Platform VSR Ageing Removing Welding Stress for Pipe Girth Weld[J]. Aerospace Manufacturing Technology, 2014, 10(5): 31-34.
[2] 迪欧, 陈新旭. 振动时效对焊接件残余应力及接头力学性能的影响研究[J].热加工工艺, 2014,43(19): 194-197.
Di ou,CHEN Xinxu. Research on Effects to Residual Stress and Mechanical Properties of Joins by Vibratory Stress Relief[J]. Hot Working Technology, 2014,43(19): 194-197.
[3] Gifford, D. J. Vibratory stress relief[J]. Metals Australasia ,1984, 16(3): 10-11.
[4] W Wu, D Y Lin, S H Chen. Mechanical properties of weldment affected by various vibration frequencies[J]. Journal of Materials Science Letters. 1999, 22(18), 1829–1831.
[5] W Wu. Influence of vibration frequency on solidification of weldments[J]. Scripta Materialia, 2000, 42(7),661-665.
[6] 刘晓丹, 陶兴华, 韩振强. 振动时效工艺在消除膨胀波纹管残余应力中的应用[J]. 振动与冲击,2015, 34(4): 171-174.
LIU Xiaodan, TAO Xinghua, HAN Zhenqiang. Application of vibratory stress relief in relaxation of residual stress for expandable corrugated liners[J]. Journal of Vibration and Shock, 2015, 34(4):171-174.
[7] 饶德林, 朱政强, 葛景国, 等. 振动时效消除拼焊不锈钢板的残余应力[J]. 振动与冲击, 2005, 24(2):140-142.
RAO Delin, ZHU Zhengqiang, GE Jingguo, et al. Study on Relieving Residual Stress of Welding Stainless Steel Plates by Vibratory Stress Relief Technology[J]. Journal of Vibration and Shock, 2005, 24(2):140-142.
[8] 蒋刚. 高频振动时效消除焊接残余应力的仿真及实验研究[D], 杭州, 浙江大学, 2007.
JIANG Gang. Simulation and Experimental Research on Welding Residual Stress Relieving by High Frequency Vibratory Stress Relief Technology[D]. Hangzhou, Zhejiang University, 2007.
[9] Kwofie S. Plasticity model for simulation, description and evaluation of vibratory stress relief[J]. Materials Science & Engineering: A. 2009, 516:154-61.
[10] Samardžić I, Vuherer T, Marić D, Konjatić P. Influence of vibrations on residual stresses distribution in welded joints[J]. Metalurgija, 2015, 54(3): 527-530.
[11] Hlaváček P, Brumek J, Horsák L. Using of abrasive water jet for measurement of residual stress in railway wheels[J]. Technical Gazette, 2012, 19(2) : 387-390.
[12] Shigeru A, Katsumi K, Shigeomi K, et al. Probabilistic Evaluation of a Method for Reduction of Residual Stress in Welded Structure Using Vibration[J]. Chemical Engineering Transactions, 2013, 33: 1087-1092.
[13] Ru L P, Johan M, Pajazit A, et al. Influence of Vibration and Heat Treatment on Residual Stress of a Machined 12%Cr-Steel[J]. Advanced Materials Research, 2014, 996: 609-614.
[14] Chih C H, Peng S W, Jia S W, Weite W. Evolution of Microstructure and Residual Stress under Various Vibration Modes in 304 Stainless Steel Welds[J]. The Scientific World Journal, 2014, 8:1-9.
[15] Wang J S, Hsieh C C, Lin C M, et al. The effect of residual stress relaxation by the vibratory stress relief technique on the textures of grains in AA 6061 aluminum alloy[J]. Materials Science & Engineering A, 2014, 605: 98-107.
[16] Wang J S, Hsieh C C, Lin C M, et al. Texture evolution and Residual Stress Relaxation in a Cold-Rolled Al-Mg-Si-Cu Alloy Using Vibratory Stress Relief Technique[J]. Materials Science & Engineering A, 2013, 44: 806-817.
[17] Wang J S, Hsieh C C, Lin C M, et al. The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique[J]. Materials Characterization, 2015, 99: 248-253.
[18] 沈华龙, 吴运新. 高强度铝合金厚板振动时效工艺的研究[J], 振动与冲击, 2009, 28(8):191-194.
SHEN Hualong,WU Yunxin. Study on Vibratory Stress Relief of High-strength Aluminum Alloy Thick Plates[J]. Journal of Vibration and Shock, 2009, 28(8):191-194.
[19] C.W. Kuo, S.M. Yang, J.H. Chen, Study of vibration welding mechanism[J]. Science and Technology of Welding and Joining. 2008,13:357–362.
[20] J.S. Wang, C.C. Hsieh, C.M. Lin, Texture Evolution and Residual Stress Relaxation in a Cold-Rolled Al-Mg-Si-Cu Alloy Using Vibratory Stress Relief Technique[J]. Metallurgical and Materials Transactions A.2013,44(2). 806–818.
[21] 刘明显. 基于位错的超声波消除残余应力的微观研究[D],长春:长春工业大学,2013.
Liu Mingxian. Mechanism Research of Ultrasonic Eliminate Aluminum Alloy Welding Residual Stress based on Dislocation Theory[D]. Chang chun: Changchun University Of Technology, 2013.
[22] HB/Z 26-2011, 航空零件喷丸强化工艺[S].
HB/Z 26-2011, Shot blasting strengthening technology for aviation parts[S].
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}