[1] 杨先健. 工业环境振动中的土动力学问题[J]. 岩土工程学报, 1992, 114(2): 82-88.
YANG Xianjian. Soil dynamics problems in industrial environmental vibration[J]. Chinese Journal of Geotechnical Engineering, 1992, 114(2): 82-88.
[2] WOODS R D. BARNET N E, SANGESSER R. A new tool for soil dynamics[J]. Journal of Geotechnical Engineering Division, ASCE, 1974, 100(11): 1234-1247.
[3] LIAO S, SANGREY D A. Use of piles as isolation barriers[J]. Journal of Geotechnical Engineering Division, ASCE, 1978, 104(9): 1139-1152.
[4] KATTIS S E, POLYZOS D, BESKOS D E. Vibration isolation by a row of piles using a 3-D frequency domain BEM[J]. International journal for numerical methods in engineering, 1999, 46(5): 713-728.
[5] KATTIS S E, POLYZOS S, BESKOS D E. Modelling of pile wave barriers by effective trenches and their screening effectiveness[J]. Soil Dynamics and Earthquake Engineering, 1999, 18: 1-10.
[6] 高广运. 非连续屏障地面隔振理论与应用[D]. 杭州: 浙江大学建筑工程学院, 1998.
[7] 高广运, 李志毅, 邱畅. 填充沟屏障远场被动隔振三维分析[J]. 岩土力学, 2005, 26(8): 1184-1188.
GAO Guangyun, LI Zhiyi, QIU Chang. Three-dimensional analysis of in-filled trench as barriers for isolating vibration in far field[J]. Rock and Soil Mechanics, 2005, 26(8): 1184-1188.
[8] GAO G Y, LIA Z Y, QIU Ch, et al. Three-dimensional analysis of rows of piles as passive barriers for ground vibration isolation[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(11): 1015-1027.
[9] 徐平, 闫东明, 邓亚虹等. 单排非连续刚性桩屏障对弹性波的隔离[J]. 振动与冲击, 2007, 26(11): 133-137.
XU Ping, YAN Dongming, DENG Yahong, et al. Isolation of elastic waves by discontinuous barrier composed of a row of rigid piles[J]. Journal of Vibration and Shock, 2007, 26(11): 133-137.
[10] 徐平, 夏唐代, 周新民. 单排空心管桩屏障对平面SV波的隔离效果研究[J]. 岩土工程学报, 2007, 29 (1): 131-136.
XU Ping, XIA Tangdai, ZHOU Xinmin. Study on effect of barrier of a row of hollow pipe piles on isolation of incident plane SV waves[J]. Chinese Journal of Geotechnical Engineering, 2007, 29 (1): 131-136.
[11] TSAI P H, FENG Z Y, JEN T L. Three-dimensional analysis of the screening effectiveness of hollow pile barriers for foundation-induced vertical vibration[J]. Computers and Geotechnics, 2008, 35: 489-499.
[12] 夏唐代, 孙苗苗, 陈晨. SH波入射下多重散射的改进算法及任意桩布置形式的隔振研究[J]. 振动工程学报, 2010, 23(4): 409-414.
XIA Tangdai, SUN Miaomiao, CHEN Chen. An improved method for multiple scattering under SH incident waves and analysis of vibration isolation[J]. Journal of Vibration Engineering, 2010, 23(4): 409-414.
[13] 夏唐代, 陈晨, 孙苗苗. SV波入射下多重散射问题的改进算法以及双排非连续刚性屏障的隔振研究[J]. 振动与冲击, 2011, 30(4): 86-90.
XIA Tangdai, CHEN Chen, Sun Miaomiao. An improved method for multiple scatting under SV incident waves and vibration isolation using rows of piles[J]. Journal of vibration and shock,2011, 30(4): 86-90.
[14] 孙苗苗,夏唐代. 多排任意排列的弹性桩屏障对平面P波或SV波多重散射[J]. 振动与冲击, 2014, 33(6): 148-154.
Sun Miaomiao, XIA Tangdai. Multiple scattering of P and SV waves by muti-row arbitrarily arranged elastic piles barrier[J]. Journal of vibration and shock, 2014, 33(6): 148-154.
[15] LU J F, XU B, WANG J H. A numerical model for the isolation of moving-load induced vibrations by pile rows embedded in layered porous media[J]. International Journal of Solids and Structures, 2009, 46: 3771-3781.
[16] 徐满清. 饱和土体中排桩对移动荷载的被动隔振效果分析[J]. 岩土力学, 2010, 31(12): 3997-4005.
XU Manqing. Analysis of passive isolation of vibration due to moving loads using pile rows embedded in a poroelastic half space[J]. Rock and Soil Mechanics, 2010, 31(12): 3997-4005.
[17] 时刚, 高广运. 饱和地基中二维空沟远场被动隔振研究[J]. 振动与冲击, 2011, 30(9): 157-162.
SHI Gang, GAO Guangyun. Two-dimensional analysis of open trench used as passive barriers in saturated soil[J]. Journal of vibration and shock, 2011, 30(9): 157-162.
[18] 时刚, 高广运. 饱和地基中单排桩远场被动隔振研究[J]. 振动工程学报, 2010, 23(5): 546-553.
SHI Gang, GAO Guangyun. Three-dimensional analysis of a row of piles as passive barriers in saturated soil[J]. Journal of Vibration Engineering, 2010, 23(5): 546-553.
[19] 时刚. 饱和地基中Rayleigh波的传播与屏障隔振研究[D]. 上海: 同济大学, 2008.
SHI Gang. The propagation of Rayleigh wave in saturated soil and vibration isolation by wave barriers[D]. Shanghai: Tongji University, 2008.
[20] BOIT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28: 168-78.
[21] SCHANZ M, ANTES H, RUBERG T. Convolution quadrature boundary element method for quasi-static visco- and poroelastic continua[J]. Computers and Structures, 2005, 83: 673-684.
[22] 时刚, 高广运, 冯世进. 饱和层状地基的薄层法基本解及其旁轴边界[J]. 岩土工程学报, 2010, 32(5): 664-671.
SHI Gang, GAO Guangyun, FENG Shijin. Basic solution of saturated layered ground by thin layered method and its paraxial boundary[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 664-671.