为了研究离心泵叶片进口边不同破损程度下的振动特性,针对在同种破坏方式下不同破坏程度对泵振动的影响,通过信号处理方法分析多个工况下的振动信号的时域和频域特征。选用IS-50-160-00单级单吸离心泵为试验对象,研究了六个叶片离心泵分别破坏对称2、4、6个进口叶片离心泵进行试验,在离心泵上布置加速度传感器,采集泵不同运行工况下的径向、纵向、轴向和基座方向振动信号,并进行时域和频谱分析,分别把正常叶片、破损2、4、6个进口叶片对应的振动信号进行对比分析,从而获得叶轮破坏不同程度下的振动信号特征。试验结果表明:由时域图可知,2个叶片进口破坏的情况下泵轴向振动信号波动幅值最大,其不稳定性最差;在频谱中得出:叶片的破损导致离心泵转子旋转失衡并产生轴向伴随频率使振动能量增加,出现大量的高倍频;在统计方法中:振动能量随着流量的增加呈先降低后平稳的趋势,设计工况点处各个方向的振动能量趋于平稳。研究离心泵叶轮不同破坏程度下振动信号特征,可以为离心泵故障的监测分析提供借鉴和参考。
Abstract
In order to study vibration characteristics of a centrifugal pump under different damage degrees of its blades at inlet edge, an IS-50-160-00 single-suction centrifugal pump was taken as the test object.To acquire influences of different damage degrees of impeller blades under the same damage mode on the pump vibration, 6 centrifugal pumps were used to do tests.The symmetrical 2, 4 and 6 inlet blades of these pumps were damaged.Acceleration sensors were arranged on these centrifugal pumps, vibration signals in radial, longitudinal, axial and pedestal directions under different operating conditions were collected, respectively.They were analyzed in time domain and in frequency domain, respectively.Vibration signals corresponding to cases of normal impeller blades and symmetrical 2, 4 and 6 inlet blades damaged were compared and analyzed, respectively to obtain vibration signal characteristics under different damage degrees of impeller.The test results showed that in time domain figures, the amplitude fluctuation of the axial vibration of the pump with two damaged blades is the largest, so its stability is the worst; in the frequency domain figures, damaged blades cause the pump rotation to lose balance and generate axial accompanying frequencies to increase vibration energy and a lot of high frequency components appear; in the statistical method, vibration energy decreases at first and then keeps steady with increase in flow rate, and vibration energy in all directions tends to be steady at designed case points; to study vibration characteristics of the centrifugal pump under different damage degrees of its impeller can provide a reference for fault monitoring and diagnosis of centrifugal pumps.
关键词
离心泵 /
破损叶轮 /
振动 /
时域分析 /
频谱分析
{{custom_keyword}} /
Key words
centrifugal pump /
damage impeller /
vibration /
time domain analysis /
spectrum domain analysis;
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙慧,袁寿其,骆寅,等. 水机电共同作用的离心泵内部非定常流动分析[J]. 排灌机械工程学报, 2016, 34(2):122-127.
SUN Hui, YUAN Shouqi, LUO Yin, et al. Unsteady flow analysis of centrifugal pumps influenced by flow, motor and electricity [J]. Journal of drainage and irrigation machinery engineering(JDIME), 2016, 34 (2): 122-127,150.
[2] 黄文虎等编著. 设备故障诊断原理、技术及应用[M].北京:科学出版社.1996.
Huang Wenhu et al . Equipment fault diagnosis principle, technology and application [M]. Beijing: Science Press .1996.
[3] 王天金,冯志鹏,郝如江,等. 基于Teager能量算子的滚动轴承故障诊断研究[J]. 振动与冲击, 2012, 31(2):1-5.
Wang Tianjin, Feng Zhipeng, Hao Rujiang, et al.Fault diagnosis of rolling bearing based on teagerenergy operator [J]. Journal of Vibration and Shock, 2012, 31 (2): 1-5.
[4] 赵志宏,杨绍普. 一种基于样本熵的轴承故障诊断方法 [J]. 振动与冲击, 2012, 31(6):136-140.
ZHAO Zhihong, YANG Shaopu.A method for bearing fault diagnosis based on sample entropy[J].Journal of Vibration and Shock, 2012, 31 (6): 136-140.
[5] 张伟,吴玉林,陈乃祥,等. 蓄能机组主轴密封故障监测与诊断[J]. 农业机械学报, 2001, 32(1):52-55.
ZHANG Wei, WU Yulin, CHEN Naixiang, et al. Monitoring and diagnosis of the main shaft sealing for a pumped storage unit [J]. Journal of Agricultural Mechanization, 2001, 32 (1): 52-55.
[6] 孙嗣莹,何云涛,任廷荣. 往复式压缩机填料密封的机械故障诊断方法[J]. 西安交通大学学报, 1996(8):51-56.
SUN Siying, HE Yuntao, REN Tingrong. Mechanical fault diagnosis method for packing seal of reciprocating compressor [J]. Journal of Xi'an Jiao tong University, 1996 (8): 51-56.
[7] 邢树立. 离心泵的气蚀现象及改善措施[J]. 科技创新与应用, 2016(4):134-134.
XING Shuli. Cavitation of centrifugal pump and improvement measures [J]. Technological innovation and application, 2016(4):134-134.
[8] 季海林. 高比转速轴流泵汽蚀性能的改进[J]. 江苏水利, 1986(3).
JI Hailin.Improvement of cavitation performance of high specific speed axial flow pump [J]. Jiangsu Water Conservancy, 1986 (3).
[9] 刘军,邹英杰. MS 22耐磨蚀铸铁叶轮的失效分析及解决措施[J]. 水泵技术, 2012(3):41-43.
LIU Jun, ZOU Yingjie. Failure analysis and solution of MS 22 wear-resistant cast iron impeller [J]. Pump Technology, 2012 (3): 41-43.
[10] 蒋刚, 张建生. 含沙水体对叶轮磨蚀特性的模糊支持向量预测法[J]. 信息与控制, 2011, 40(1):90-94.
JIANG Gang, ZHANG Jiansheng. Impeller ablation performance index forecasting method by sandiness water based on fuzzy support vector machine[J]. Information and Control, 2011, 40(1):90-94
[11] 唐一科,柯研, 谢志江. 叶轮机械叶片状态监测与故障诊断的现状与发展[J]. 噪声与振动控制, 2003, 23(6):5-8.
Tang Yike, Ke Yan, Xie Zhijiang. The Actuality and Development of Turbo Machine,s Status blade Monitoring and Fault Diagnosis [J].Noise and Vibration Control, 2003, 23 (6): 5-8.
[12] 周云龙,吕远征. 基于出口压力脉动奇异值的离心泵早期汽蚀故障诊断[J]. 化工自动化及仪表, 2015(11):1220-1225.
ZHOU Yunlong, LV Yuanzheng. Preparation of early cavitation fault of centrifugal pump based on export pressure pulsation singular value [J]. Chemical Automation and Instrumentation, 2015 (11): 1220-1225.
[13] Kawashima.T. Turbine blade vibration monitoring system.ASME Paper.1992,No.92-GT-159:372-376.
[14] Simmons,H.R. Measuring of rotor and blade dynamic using an optical blade tip sensor.1990,No.90-GT-91:581-584.
[15] BarschdorfD,Korhauer R. A spects of failure diagnosis on rotating parts of turbomachines using computer simulation and pattern recognition methods.Paper No.H1.Presented at the International conference of Condition Monitoring,Brighton,United Kingdom.May 1987:21-23.
[16] 田爱民, 田爱杰. 离心泵叶轮内磨损规律的试验研究[J]. 煤炭科学技术, 1998(1):11-12.
TIAN Aimin,TIAN Aijie. Experiment research on wear of impeller of centrifugal pumps[J] Coal Technology of Northeast China, 1998(1):11-12.
[17] 梁双印,柳亦兵,张志明,等. 大机组锅炉给水泵振动监测分析[J]. 中国电力, 2001, 34(5):1-3.
LIANG Shuanyin, LIU Yibing, ZHANG Zhiming, et al. Large feed pump vibration monitoring and analysis unit boiler [J] China Power, 2001, 34 (5): 1-3.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}