关于非线性系统辨识的恢复力曲面法和希尔伯特变换法

袁天辰 1,杨俭 1,陈立群 2,3,4

振动与冲击 ›› 2019, Vol. 38 ›› Issue (1) : 73-78.

PDF(1336 KB)
PDF(1336 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (1) : 73-78.
论文

关于非线性系统辨识的恢复力曲面法和希尔伯特变换法

  • 袁天辰 1 ,杨俭 1,陈立群 2,3,4
作者信息 +

Restoring force surface method and Hilbert transform one for nonlinear system identification#br#

  • YUAN Tianchen1, YANG Jian1, CHEN Liqun2,3,4
Author information +
文章历史 +

摘要

本文针对均匀薄板和压电双晶薄板进行了非线性辨识实验,比较了两种方法——恢复力曲面法和希尔伯特变换法。针对辨识数据的函数逼近问题,提出将位移-刚度函数而非位移-恢复力函数用于数据拟合。通过均匀薄板和压电双晶薄板的实验结果,验证了位移-刚度函数确实能提高小位移处的函数逼近精度并更加准确展现系统的非线性特性。本文还对比了恢复力曲面法和希尔伯特变换法在辨识精度和数据利用率方面的区别,结果显示希尔伯特变换法能有效抑制小位移处位移—刚度曲线的不规则振荡,并有着较高的数据利用率。

Abstract

Two nonlinear system identification methods including the restoring force surface method and Hilbert transform one were compared based on experiments of a homogeneous plate and a piezoelectric bimorph one.The stiffness-displacement function was proposed to be used for data fitting instead of the restoring force-displacement function in the function approximation process.The experiment results of a homogeneous plate and a piezoelectric bimorph one showed that using the stiffness-displacement function can improve the function approximation accuracy at small displacements.The identification accuracy and data utilization rate obtained by the restoring force surface method were compared with those obtained by Hilbert transform one.The results showed that Hilbert transform method can effectively suppress irregular oscillations of the stiffness-displacement curve at small displacements, and it has a higher data utilization rate.

关键词

非线性 / 系统辨识 / 希尔伯特变换 / 实验

Key words

Nonlinearity / System identification / Hilbert transform / Experiment

引用本文

导出引用
袁天辰 1,杨俭 1,陈立群 2,3,4. 关于非线性系统辨识的恢复力曲面法和希尔伯特变换法[J]. 振动与冲击, 2019, 38(1): 73-78
YUAN Tianchen1, YANG Jian1, CHEN Liqun2,3,4. Restoring force surface method and Hilbert transform one for nonlinear system identification#br#[J]. Journal of Vibration and Shock, 2019, 38(1): 73-78

参考文献

[1] Worden K., Tomlinson G.R. Nonlinearity in Structural Dynamics: Detection, Identification and Modeling[M]. 陈前, 高雪 译. 北京: 机械工业出版社, 2012.
[2] Krauss R.W., Nayfeh A.H. Experimental Nonlinear Identification of a Single Mode of a Transversely Excited Beam[J]. Nonlinear Dynamics, 1999, 18(1): 69-87.
[3] Yasuda K., Kawamura S., Watanabe K. Identification of Nonlinear Multi-Degree-of-Freedom Systems: Presentation of an Identification Technique[J]. Japan Society of Mechanical Engineers International Journal series III, 1987, 53(495): 8-14.
[4] Amabili M., Alijani F., Delannoy J. Damping for large-amplitude vibrations of plates and curved panels, part 2: Identification and comparisons[J]. International Journal of Non-Linear Mechanics, 2016, 85: 226-240.
[5] Masri S.F., Caughey T.K. A Nonparametric Identification Technique for Nonlinear Dynamic Problems[J]. Journal of Applied Mechanics, 1979, 46(2): 433-447.
[6] Feldman M. Non-linear system vibration analysis using Hilbert Transform—I: Free vibration analysis method Freevib[J]. Mechanical Systems & Signal Processing, 1994, 8(2): 119-127.
[7] Feldman M. Non-linear system vibration analysis using Hilbert transform—II: Forced vibration analysis method Forcevib[J]. Mechanical Systems & Signal Processing, 1994, 8(3): 309-318.
[8] Braun S., Feldman M. Decomposition of non-stationary signals into varying time scales: Some aspects of the EMD and HVD methods[J]. Mechanical Systems & Signal Processing, 2011, 25(7): 2608-2630.
[9] 邓杨, 彭志科, 杨杨, 等. 基于参数化时频分析的非线性振动系统参数辨识[J]. 力学学报, 2013, 45(6): 992-996.
DENG Yang, PENG Zhi-ke, YANG Yang, et al. Identification of nonlinear vibration systems based on parametric TFA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 992-996.
[10] Feldman M. Mapping nonlinear forces with congruent vibration functions [J]. Mechanical Systems and Signal Processing, 2013, 37(1-2): 315–337.
[11] 闫蓓王斌李媛. 基于最小二乘法的椭圆拟合改进算法[J].北京航空航天大学学报, 2008 , 34 (3) :295-298.
YAN Bei, WANG Bin, LI Yuan. Optimal ellipse fitting method base d on least-square principle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34 (3): 295- 298.
[12] Worden K., Hickey D., Haroon M., et al. Nonlinear system identification of automotive dampers: A time and frequency-domain analysis[J]. Mechanical Systems & Signal Processing, 2009, 23(1):104-126.
[13] Chen L.Q., Yuan T.C. Nonlinear oscillation of a circular plate energy harvester[C]. XXVI International Congress of Theoretical and Applied Mechanics, 21-26, August, 2016, Montrèal, Canada.
[14] 唐贵基, 庞彬. 基于改进的希尔伯特振动分解的机械故障诊断方法研究[J]. 振动与冲击, 2015, 34(3): 167-182.
TANG Gui-ji, PANG Bin. A mechanical fault diagnosis method based on improved Hilbert vibration decomposition[J]. Journal of Vibration and Shock, 2015, 34(3):167-182.
[15] 朱可恒,宋希庚, 薛冬新. 希尔伯特振动分解在滚动轴承故障诊断中应用[J]. 振动与冲击, 2014, 33(14): 160-164.
ZHU Ke-heng, SONG Xi-geng, XUE Dong-xin. Roller bearing fault diagnosis using Hilbert vibration decomposition[J]. Journal of Vibration and Shock, 2014, 33(14): 160-164.
[16] 李辉, 郑海起, 杨绍普.基于EMD和Teager能量算子的轴承故障诊断研究[J]. 振动与冲击, 2008, 27(10):15-7.
LI Hui, ZHENG Hai-qi, YANG Shao-pu. Bearing fault diagnosis based on EMD and Teager-Kaiser energy operator[J]. Journal of Vibration and Shock, 2008, 27(10):15-17.
[17] Feldman M. Hilbert transform in vibration analysis[J]. Mechanical Systems & Signal Processing, 2011, 25(3): 735-802.

PDF(1336 KB)

Accesses

Citation

Detail

段落导航
相关文章

/