基于微纳耦合光纤传感器的模态声发射源线性定位研究

付文成 刘懿莹 王霖洁 李凤梅

振动与冲击 ›› 2019, Vol. 38 ›› Issue (1) : 79-88.

PDF(1554 KB)
PDF(1554 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (1) : 79-88.
论文

基于微纳耦合光纤传感器的模态声发射源线性定位研究

  • 付文成 刘懿莹 王霖洁 李凤梅
作者信息 +

Linear positioning for modal acoustic emission source based on micronano-fiber coupled sensors

  • FU Wencheng,LIU Yiying,WANG linjie,LI Fengmei
Author information +
文章历史 +

摘要

微纳耦合光纤由于其抗电磁干扰能力强,制作简单和解调成本低,在声发射检测领域具有良好的应用前景。但将其与模态声发射源定位技术相结合还未有报道。利用微纳耦合光纤传感器,通过S0/A0峰值定位方法和A0/A0阈值定位方法实现了对模态声发射源的线性定位;分析了Gabor变换时间分辨率对S0/A0定位方法中模态识别准确度的影响规律,和 A0/A0定位方法中等值线阈值对定位结果的影响规律;对比讨论了两种定位方式的定位精度、定位范围和定位重复性。本研究对微纳耦合光纤传感器在模态声发射源定位中的实际应用具有积极的指导意义。

Abstract

Due to their strong anti-electromagnetic interference ability, being easy to make, and low demodulation cost, micronano-fiber coupled sensors (MFCSs) have a good application prospect in the field of acoustic emission.However, their application in modal acoustic emission source positioning is not reported.Here, linear positioning for modal acoustic emission source was realized based on the S0/A0 peak value positioning method and the A0/A0 threshold one using MFCS.The influence law of Gabor transform’s time resolution on the accuracy of modal recognition in the S0/A0 positioning method and that of isopleth threshold in the A0/A0 positioning method on the positioning results were analyzed.The positioning accuracy, positioning range and positioning repeatability of two methods were compared and discussed.This study provided a guide for practical application of micronano-fiber coupled sensors in modal acoustic emission sources’ linear positioning.

关键词

微纳耦合光纤传感器 / 模态声发射 / 频散特性 / 线性定位

Key words

Micro-fiber coupler sensors / modal acoustic emission / dispersion characteristics / liner location

引用本文

导出引用
付文成 刘懿莹 王霖洁 李凤梅. 基于微纳耦合光纤传感器的模态声发射源线性定位研究[J]. 振动与冲击, 2019, 38(1): 79-88
FU Wencheng,LIU Yiying,WANG linjie,LI Fengmei . Linear positioning for modal acoustic emission source based on micronano-fiber coupled sensors[J]. Journal of Vibration and Shock, 2019, 38(1): 79-88

参考文献

[1] 王牛俊,陈莉. 声发射检测技术的原理及应用[J]. 轻工科技, 2010, 26(3):41-43.
WANG Niu-jun, CHEN Li. The principle and application of acoustic emission detection technology[J]. Guangxi journal of light Industry, 2010, 26(3):41-43.
[2] Jiao J, Wu B, He C. Acoustic emission source location methods using mode and frequency analysis[J]. Structural Control & Health Monitoring, 2008, 15(4):642–651.
[3] Aljets D, Chong A, Wilcox S, et al. Acoustic emission source location on large plate-like structures using a local triangular sensor array[J]. Mechanical Systems & Signal Processing, 2012, 30(7):91-102.
[4] 龙小江, 李秋锋, 何才厚,等. 不同拉伸速率下钢材损伤的声发射监测评价[J]. 振动与冲击, 2017, 36(7):219-225.
LONG Xiao-jiang, LI Qiu-feng, HE Cai-hou, et al. Acoustic emission monitoring and evaluation for rolled steel damage under different tensile rates[J]. Journal of vibration and shock, 2017, 36(7):219-225.
[5] 宋阳, 吴凡, 刘德扣,等. 基于声发射及小波奇异性的钢轨损伤检测[J]. 振动与冲击, 2017, 36(2):196-200.
SONG Yang, WU Fan, LIU De-kou, et al. Rail damage detection method based on acoustic emission and wavelet singularity[J]. Journal of vibration and shock, 2017, 36(2):196-200.
[6] 龚仁荣,程志勤,顾建祖,等. 模态声发射在结构材料缺陷定位中的研究[J]. 振动与冲击, 2006, 25(3):176-179.
GONG Ren-rong, CHENG Zhi-qin, GU Jian-zu, et al. Experimental study on modal acoustic emission for defect locating in structural materials[J]. Journal of vibration and shock, 2006, 25(3):176-179.
[7] 耿荣生,沈功田,刘时凤. 模态声发射—声发射信号处理的得力工具[J]. 无损检测, 2002, 24(8):341-345.
GENG Rong-sheng,SHEN Gong-tian,LIU Shi-fen. Modal acoustic emission: a powerful tool for a00usrnc emission signal processing[J]. Nondestructive Testing, 2002, 24(8):341-345.
[8] Surgeon M, Wevers M. Modal analysis of acoustic emission signals from CFRP laminates[J]. Ndt & E International, 1999, 32(6):311-322.
[9] Surgeon M, Wevers M. One sensor linear location of acoustic emission events using plate wave theories[J]. Materials Science & Engineering A, 1999, 265(1–2):254-261.
[10] 李耀东,黄成祥,侯力. 模态声发射技术在构件疲劳裂纹检测中的应用[J]. 振动与冲击, 2005, 24(2):122-125.
LI Yao-dong, HUANG Cheng-xiang, HOU Li. Detecting acoustic emission signals from fatigue crack propagation[J]. Journal of vibration and shock, 2005, 24(2):122-125.
[11] Martínez-Jequier J, Gallego A, Suárez E, et al. Real-time damage mechanisms assessment in CFRP samples via acoustic emission Lamb wave modal analysis[J]. Composites Part B, 2015, 68(4):317-326.
[12] Jiao J, He C, Wu B, et al. Application of wavelet transform on modal acoustic emission source location in thin plates with one sensor[J]. International Journal of Pressure Vessels & Piping, 2004, 81(5):427-431.
[13] Li F, Liu Y, Wang L, et al. Investigation on the response of fused taper couplers to ultrasonic wave[J]. Appl Opt, 2015, 54(23):6986-93.
[14] 马良柱,常军,刘统玉,等. 基于光纤耦合器的声发射传感器[J]. 应用光学, 2008, 29(6):990-994.
MA Liang-zhu, CHANG Jun, LIU Tong-yu, et al. Acoustic emission sensor based on fiber coupler [J]. Journal of Applied Optics, 2008, 29(6):990-994.
[15] Chen R, Fernando G F, Butler T, et al. A novel ultrasound fiber optic sensor based on a fused-tapered optical fiber coupler[J]. Measurement Science & Technology, 2004, 15(8):1490-1495.
[16] Chen R, Bradshaw T, Burns J, et al. Linear location of acoustic emission using a pair of novel fiber optic sensors[J]. Measurement Science & Technology, 2006, 17(8):2313-2318.
[17] Fu T, Liu Y, Lau K T, et al. Impact source identification in a carbon fiber reinforced polymer plate by using embedded fiber optic acoustic emission sensors[J]. Composites Part B, 2014, 66(4):420-429.
[18] Redwood M. Rayleigh and Lamb waves[J]. Ultrasonics, 1967, 5(4):260-260.
[19] De Marchi L, Marzani A, Speciale N, et al. A passive monitoring technique based on dispersion compensation to locate impacts in plate-like structures[J]. Smart Materials & Structures, 2011, 20(3):035021.

PDF(1554 KB)

Accesses

Citation

Detail

段落导航
相关文章

/