对PCB在运输与使用过程中受振动影响易产生故障的问题,提出一种新型的电路板动力学与电路联合设计方法,能在满足电路设计的前提下,提高它的抗振特性。首先基于PCB的动力学分析,确定电路板的模态敏感区域,结合谐响应分析确定阻尼器的安装位置。然后通过离散单元法计算颗粒系统的耗能,针对颗粒阻尼器模型的设计,进行颗粒粒径大小、填充率等参数的优化,并确定颗粒阻尼器在PCB上的安装方案,在此基础上完成整个电路体系的设计。通过仿真与试验相结合,验证敏感区域安装颗粒阻尼器能使得PCB减振效果达到50%以上。这种联合设计的方法,对于提高电路板的抗振特性具有重要意义。
Abstract
A new joint design method of dynamics and circuit for PCB was presented, which can improve the anti-vibration performance of PCB on the premise of satisfying the circuit design, in order to solve the problem that the vibration of PCB is easily affected by vibration in the process of transportation and use.Firstly, based on the dynamic analysis of PCB, the modal sensitive region of the circuit board was determined, and the mounting position of the damper was determined by the harmonic response analysis.Then the energy dissipation of the particle system was calculated by the discrete element method.According to the design of the particle damper model, the particle size, filling rate and other parameters were optimized, and the installation scheme of the particle damper on the PCB was determined.On this basis, the design of the whole circuit system was completed.Through the combination of simulation and experiment, it was verified that the installation of particle damper in sensitive areas can increase the vibration reduction effect of PCB more than 50%.This joint design method is of great significance for improving the anti-vibration characteristics of the circuit board.
关键词
PCB /
颗粒阻尼 /
动力学分析 /
离散单元法 /
联合设计
{{custom_keyword}} /
Key words
PCB /
particle damping /
dynamics analysis /
discrete element method /
joint design
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李朝旭,电子设备的抗振动设计[J].电子机械工程,2002(01):51-55.
LI Chao-xu. Vibration resistance design of electronic equipment[J]. Electro-Mechanical Engineering, 2002(01):51-55.
[2] Seungbae Park, Chirag Shah ,Jae Kwak, et al. Transient dynamic simulation and full-field test validation for a slim-PCB of mobile phone under drop impact [C],IEEE ECTC’07. 2007:914-923.
[3] 郭宝亭,朱梓根,崔荣繁,等.金属橡胶材料的理论模型研究[J].航空动力学报,2004,19(3):314-319.
GUO Bao-ting, ZHU Zi-gen, CUI Rong-fan,et al. Theoretical model of metal-rubber[J]. Journal of Aerospace Power,2004,19(3):314-319.
[4] 马玉宏, 李艳敏等. 基于热老化作用的橡胶隔震支座力学性能时变规律研究[J]. 地震工程与工程振动, 2017, 01(5):38-44.
MA Yu-hong , LI Yan-min et al. Research on the time-dependent law of mechanical properties for the rubber isolation bearings based on thermal aging effect[J]. Earthquake Engineering and Engineering Dynamics, 2017, 01(5):38-44.
[5] Kalpakidis I V, Constantinou M C. Effects of Heating on the Behavior of Lead-Rubber Bearings. II: Verification of Theory[J]. Journal of Structural Engineering, 2009,135(12):1450-1461.
[6] LU Z, Lu X L,MASRI S F. Studies of the performance of particle dampers under dynamic loads[J].Journal of Sound and Vibration, 2010,329(26):5415-5433.
[7] .Ma J J, Zhang D H, Wu B H, et al. Vibration suppression of thin-walled workpiece machining considering external damping properties based on magnetorheological fluids flexible fixture[J].Chinese Journal of Aeronautics,2016,29(04):1074-1083.
[8] Shah B M, Pillet D, Bai X M, et al. Construction and characterization of a particle-based thrust damping system[J]. Journal of Sound & Vibration, 2016, 326(3):489-502.
[9] Cui Z. Y., Wu J. H., Chen H. L. et al. A quantitative analysis on the energy dissipation mechanism of the non-obstructive particle damping technology[J]. Journal of Sound and Vibration, 2011, 330(11) : 2449-2456.
[10] XIAO W Q, HUANG Y X, JIANG H, et al. Effect of powder material on vibration reduction of gear system in centrifugal field[J].Powder Technology, 2016, 294: 146-158.
[11] NAYERI R D, MASRI S F, CAFFREY J P. Studies of the performance of multi-unit impact dampers under stochastic excitation[J].Journal of Vibration and Acoustics-Transactions of the ASME, 2007,129(2): 239-251.
[12] LU Z, MASRI S F, LU X L. Studies of the performance of particle dampers attached to a two-degrees-of-freedom system under random excitation[J].Journal of Vibration and Control, 2011,17(10):1454-1471.
[13] 肖望强, 黄玉祥,等. 颗粒阻尼器配置对齿轮传动系统动特性影响 [J]. 机械工程学报, 2017,53(07):1-12.
Xiao Wang-qiang , Huang Yu-xiang et al,Influence of Particle Damper Configurations on the Dynamic Characteristic for Gear Transmission Syste[J]. Journal of Mechanical Engineering. 2017,53(07):1-12.
[14] Bai X M, Shah B, Keer L M, et al. Particle dynamics simulations of a piston-based particle damper[J]. Powder Technology, 2009, 189(1):115-125.
[15] P. Veeramuthuvel,K. Shankar,K.K. Sairajan. Application of particle damper on electronic packages for spacecraft[J]. Acta Astronautica,2016,127:260-270.
[16] 陈康, 张雷, 胡晓吉. 基于模态分析的印制电路板抗
振优化设计[J]. 计算机与现代化, 2014(1):214-218.
Chen Kang, Zhan Lei, Hu Xiao-jie. Anti-vibration Optimization Design of Printed Circuit Board Based on Modal Analysis[J]. Computer and Modernization, 2014(1):214-218.
[17] 叶先磊,王建军,朱梓根.大小叶盘结构连续参数模型和振动模态[J].航空动力学报,2005(01):66-72.
YE Xian-lei, WANG Jian-jun, ZU Zi-gen, et al. Continuous Parameter Model and Vibration Modal of Sputter Vane Rotor[J]. Journal of Aerospace Power,2014 (1):214-218.
[18] Fowler B L, Flint E M, Olson S E. Design methodology for particle damping[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2001, 4331:186-197.
[19] 苏凡, 张航, 尹忠俊. 颗粒物质流变学行为和材料参数对颗粒阻尼器能量耗散的影响[J]. 振动与冲击, 2018, 37(8).
Su Fan, Zhang Hang, Yin Zhong-jun. Effects of rheology behaviour and material parameters of granular material on energy dissipation of a particle damper[J]. Journal of Vibration and Shock, 2018, 37(8).
[20] 闫维明,张向东等. 基于颗粒阻尼技术的结构减振控制[J]. 北京工业大学学报, 2012, 38(9):1317-1320.
Yan Wei-ming, Zhang Xiang-dong et al, Structure Vibration Control Based on Particle Damping Technology[J]. Journal of Beijing University of Technology, 2012, 38(9):1317-1320 .
[21] Xiao W Q ,Chen Z W, Pan T L, et al. Research on the impact of surface properties of particle on damping effect in gear transmission under high speed and heavy load[J]. Mechanical Systems and Signal Processing, 2018, 98:1116-1131.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}