Acoustic supratransmission in particulate materials
CUI Jianguo1,YANG Tianzhi1,2,CHEN Liqun1,3
Author information+
1.Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
2.School of Mechanical Engineering, Tianjin University, Tianjin 300072, China;
3.College of Sciences, Shanghai University, Shanghai 200444, China
At a given frequency, a system may occur sudden large energy flow when the harmonic driving reaches a threshold amplitude.This appearance is called nonlinear supra-transmission.In the paper, the nonlinear supra-transmission in periodic granular chain was studied.In studying the spectral responses of granular chain by numerical analysis, the whole frequency band can be divided into three parts, namely, the lower forbidden band, pass band and upper forbidden band.Besides, the responses in the three parts are entirely different.This manifestation further demonstrates our partitioning is feasible.The acoustic asymmetric propagation in particulate materials was also inrestigated.It is found that realize the one-way transmission of acoustic wave in granular materials can be realized by changing the acoustic amplitude.
CUI Jianguo1,YANG Tianzhi1,2,CHEN Liqun1,3.
Acoustic supratransmission in particulate materials[J]. Journal of Vibration and Shock, 2019, 38(10): 133-137
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Li B, Lan J, Wang L. Interface thermal resistance between dissimilar anharmonic lattices[J]. Physical Review Letters, 2005, 95(10):104302.
[2] Chang C W, Okawa D, Majumdar A, et al. Solid-state thermal rectifier[J]. Science, 2006, 314(5802):1121-1124.
[3] Kobayashi W, Teraoka Y, Terasaki I. An oxide thermal rectifier[J]. Applied Physics Letters, 2009, 95(17):143501.
[4] Huang X, Lai Y, Hang Z H, et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials[J]. Nature Materials, 2011, 10(8):582.
[5] 梁彬,袁樱,程建春. 声单向操控研究进展[J]. 物理学报, 2015, 64(9):26-36.
Liang Bin, Yuan Ying, Cheng Jian-Chun. Recent advances in acoustic one-way manipulation[J]. Acta Physica Sinica, 2015, 64(9):26-36.
[6] Liang B, Guo X S, Tu J, et al. An acoustic rectifier[J]. Nature Materials, 2010, 9(12):989-992.
[7] Fleury R, Sounas D L, Sieck C F, et al. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator[J]. Science, 2014, 343(6170):516-519.
[8] Hwan Oh J, Woong Kim H, Sik Ma P, et al. Inverted bi-prism phononic crystals for one-sided elastic wave transmission applications[J]. Applied Physics Letters, 2012, 100(21):2022.
[9] Cicek A, Adem Kaya O, Ulug B. Refraction-type sonic crystal junction diode[J]. Applied Physics Letters, 2012, 100(11):084301-R.
[10] Zhu X, Zou X, Liang B, et al. One-way mode transmission in one-dimensional phononic crystal plates[J]. Journal of Applied Physics, 2010, 108(12):121102.
[11] Narisetti R K, Leamy M J, Ruzzene M. A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures[J]. Journal of Vibration & Acoustics, 2010, 132(3):031001-1-031001-11.
[12] Boechler N, Yang J, Theocharis G, et al. Tunable vibrational band gaps in one-dimensional diatomic granular crystals with three-particle unit cells[J]. Journal of Applied Physics, 2011, 109(7):241.
[13] Boechler N, Theocharis G, Daraio C. Bifurcation-based acoustic switching and rectification[J]. Nature Materials, 2011, 10(9):665-668.
[14] Man Y, Boechler N, Theocharis G, et al. Defect modes in one-dimensional granular crystals[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2011, 85(3 Pt 2):037601.
[15] Burgoyne H A, Daraio C. Elastic-Plastic Wave Propagation in Uniform and Periodic Granular Chains[J]. Journal of Applied Mechanics, 2015, 82(8):483-496.
[16] Joseph L, Georgios T, Chiara D. Nonlinear resonances and energy transfer in finite granular chains[J]. Physical Review E, 2015, 91(2):023208.
[17] Geniet F, Leon J. Energy transmission in the forbidden band gap of a nonlinear chain[J]. Physical Review Letters, 2002, 89(13):134102.
[18] Herbold E B, Kim J, Nesterenko V F, et al. Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap[J]. Acta Mechanica, 2009, 205(1):85-103.
[19] Leon J, Geniet F. Nonlinear Supratransmission[J]. 2003, 15(17):2933.
[20] Khomeriki R. Nonlinear band gap transmission in optical waveguide arrays[J]. Physical Review Letters, 2004, 92(6):063905.
[21] Khomeriki R, Lepri S, Ruffo S. Nonlinear supratransmission and bistability in the Fermi-Pasta-Ulam model[J]. Phys.rev.e, 2004, 70(2):066626.
[22] Hertz H. Ueber die Berührung fester elastischer Körper[J]. Journal Für Die Reine Und Angewandte Mathematik, 2006, 1882(92):156-171.
[23] Nadkarni N, Daraio C, Kochmann D M. Dynamics of periodic mechanical structures containing bistable elastic elements: from elastic to solitary wave propagation[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2014, 90(2):023204.
[24] Motcheyo A B T, Tchawoua C, Siewe M S, et al. Supratransmission phenomenon in a discrete electrical lattice with nonlinear dispersion[J]. Communications in Nonlinear Science & Numerical Simulation, 2013, 18(4):946-952.