基于结构-TMD耦合系统环境振动试验的结构被控模态和TMD参数识别

温 青1 华旭刚2 王修勇1 陈政清2 孙洪鑫1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (10) : 193-198.

PDF(1740 KB)
PDF(1740 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (10) : 193-198.
论文

基于结构-TMD耦合系统环境振动试验的结构被控模态和TMD参数识别

  • 温 青1 华旭刚2 王修勇1 陈政清2 孙洪鑫1
作者信息 +

Parameter identification of structure and TMD based on ambient vibration tests of the coupled system

  • WEN Qing1,HUA Xugang2,WANG Xiuyong1,CHEN  Zhengqing2,SUN Hongxin1
Author information +
文章历史 +

摘要

为了实现TMD现场调试,提出了一种通过测试结构-TMD耦合系统的环境振动响应,识别结构模态频率、阻尼比和模态质量以及TMD的频率和阻尼比的方法。该方法首先通过测试环境激励下结构和TMD的响应,采用随机子空间算法,评估离散状态矩阵;然后将离散状态矩阵减缩和转化成单自由度结构和TMD耦合连续状态矩阵;最后,根据连续状态矩阵评估质量比、结构和TMD的固有频率和阻尼比。数值仿真分析结果发现:1)该方法可行且识别结果精度高;2)该方法适用于多模态振动结构。单层框架试验研究验证了该方法的有效性。

Abstract

A method was proposed to identify the mass ratio and the natural frequencies and damping ratios of a structure - TMD coupled system based on ambient vibration tests.First, the discrete state matrix was estimated from ambient vibration tests by the stochastic subspace identification method.Then, it was transformed into the continued state matrix of the single degree-of-freedom’s structure and TMD coupled system.Final, the mass ratio, natural modal frequencies and damping radios were identified based on the continued state matrix.Numerical analyses were carried out and the results indicate that the method is reliable and suitable for multi-degree-of-freedom structures.The tests were performed on a laboratory set-up and the viability of the method and its suitability for real applications were assessed.

关键词

参数识别 / 结构-TMD耦合系统 / 环境振动测试 / 随机子空间法

Key words

Parameter identification / Structure and TMD coupled system / ambient vibration / stochastic subspace identification

引用本文

导出引用
温 青1 华旭刚2 王修勇1 陈政清2 孙洪鑫1. 基于结构-TMD耦合系统环境振动试验的结构被控模态和TMD参数识别[J]. 振动与冲击, 2019, 38(10): 193-198
WEN Qing1,HUA Xugang2,WANG Xiuyong1,CHEN Zhengqing2,SUN Hongxin1. Parameter identification of structure and TMD based on ambient vibration tests of the coupled system[J]. Journal of Vibration and Shock, 2019, 38(10): 193-198

参考文献

[1] 闫维明,纪金豹,蒋华戈,等. 新型悬吊式TMD及其在某标志塔风振控制中的应用[J]. 建筑结构学报, 2010, 02: 55-60.
YAN Weiming, JI Jinbao, JIANG Huage, et al. A new type pendlous TMD and its application on a tower for wind-induced vibration[J]. Journal of Building Structures, 2010, 02: 55-60.
[2] Lu X, Zhang Q, Weng D, et al. Improving performance of a super tall building using a new eddy‐current tuned mass damper[J]. Structural Control and Health Monitoring, 2017, 24(3).
[3] 雷旭,牛华伟,陈政清,等. 大跨度钢拱桥吊杆减振的新型电涡流TMD开发与应用[J].中国公路学报, 2015, 04: 60-68+85.
LEI Xu, NIU Huawei, CHEN Zheng-qing, et al. Development and Application of a New-type Eddy Current TMD for Vibration Control of Hangers of Long-span Steel Arch Bridges[J]. China Journal of Highway and Transport, 2015, 04: 60-68+85.
[4] 王志诚,许春荣,吴宏波. 崇启大桥主桥钢箱梁TMD系统设计参数计算研究[J].土木工程学报, 2015, 05: 76-82.
Wang Zhicheng Xu Chunrong Wu Hongbo. Study on design parameters of TMD system for steel box girder of Chongqi Bridge[J]. CHINA CIVIL ENGINEERING JOURNAL, 2015, 05: 76-82.
[5] Weber F, Maślanka M. Frequency and damping adaptation of a TMD with controlled MR damper[J]. Smart Materials & Structures, 2012, 21(5): 55011-55027.
[6] 吕西林, 丁鲲, 施卫星, 等. 上海世博文化中心TMD减轻人致振动分析与实测研究[J]. 振动与冲击, 2012, (02): 32-37+150.
LU Xi-lin, DING Kun, SHI Wei-xing, et al. Analysis and field test for human-induced vibration reduction with TMD in Shanghai EXPO culture center[J]. Journal of Vibration and Shock, 2012, (02): 32-37+150.
[7] 华旭刚, 温青, 陈政清, 等. 大跨度双层曲线斜拉桥人致振动减振优化与实测验证[J]. 振动工程学报, 2016, (05): 822-830.
Hua X.G., Wen Q., Chen Z.Q., et al. Design and Experimental Validation of Structural Vibration Control of a Curved Twin-Deck Cable-Stayed Bridge subject to Pedestrians[J]. Journal of Vibration Engineering, 2016, (05): 822-830.
[8] Caetano E, Álvaro Cunha, Moutinho C, et al. Studies for controlling human-induced vibration of the Pedro e Inês footbridge, Portugal. Part 2: Implementation of tuned mass dampers[J]. Engineering Structures, 2010, 32(4): 1082-1091.
[9] Weber B, Feltrin G. Assessment of long-term behavior of tuned mass dampers by system identification[J]. Engineering Structures, 2010, 32(11): 3670-3682.
[10] 王文熙, 华旭刚, 王修勇, 等. TMD系统在自身参数随机偏离下的减振有效性和可靠性分析[J]. 振动与冲击, 2016, (01): 228-234.
WANG Wen-xi, HUA Xu-gang, WANG Xiu-yong, et al. Vibration reduction validity and reliability of a TMD system under random deviation of its own parameters[J]. Journal of Vibration and Shock, 2016, (01): 228-234.
[11] 温青, 华旭刚, 陈政清, 等. 大跨度双层曲线斜拉桥人致振动试验研究[J]. 振动工程学报, 2016, (04): 585-593.
Wen Q., Hua X.G., Chen Z.Q., et al. Experimental Study of Human-induced Vibrations of a Twin-Deck Curved Cable-Stayed Bridge [J]. Journal of Vibration Engineering, 2016, (04): 585-593.
[12] Shi W, Shan J, Lu X. Modal identification of Shanghai World Financial Center both from free and ambient vibration response [J]. Engineering Structures, 2012, 36(0): 14-26.
[13] 温青, 华旭刚, 陈政清, 等. 基于稳态简谐激励的人行桥模态参数识别[J]. 中国公路学报, 2017, (02): 98-106.
WEN Qing,HUA Xu-gang,CHEN Zheng-qing,Modal Parameters Identification of Footbridges Based on Steady-State Harmonic Excitation[J]. China Journal of Highway and Transport, 2017, (02): 98-106.
[14] Chen G W, Beskhyroun S, Omenzetter P. Experimental investigation into amplitude-dependent modal properties of an eleven-span motorway bridge[J]. Engineering Structures, 2016, 107: 80-100.
[15] Brownjohn J M W, Carden E P, Goddard C R, et al. Real-time performance monitoring of tuned mass damper system for a 183m reinforced concrete chimney[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(3): 169-179.
[16]段成荫,邓洪洲. 基于特征系统实现算法的输电塔气动阻尼风洞试验研究[J]. 振动与冲击, 2014, 33(21):131-136+147.
DUAN Cheng-yin, DENG Hong-zhou. Wind tunnel tests for aerodynamic damping of a transmission tower based on eigensystem realization algorithm[J]. Journal of Vibration and Shock, 2014, 33(21): 131-136+147.
[17] Van O, P., De M, B. Subspace identification for linear systems: theory, implementation and applications[J], 1996, Dordrecht (Netherlands): Kluwer Academic Publishers.

PDF(1740 KB)

475

Accesses

0

Citation

Detail

段落导航
相关文章

/