为研究土—框筒结构动力相互作用体系在多向地震作用下的动力响应,对20层框筒结构的土—结构动力相互作用(SSI)模型和刚性基础(FB)模型分别进行了多向地震作用的振动台试验。通过试验数据的模态识别,分析了SSI和FB两种模型在不同工况下的固有频率、阻尼比和振型的差别。将不同烈度地震作用下SSI模型上部结构水平方向的峰值加速度、最大层间位移、最大层间位移角以及最大动应变进行对比,分析了单向水平和多向地震作用下SSI模型水平方向动力响应的差别。通过对比SSI和FB两种模型在多向地震作用下上部结构的竖向峰值加速度和层间位移,分析了土对结构竖直方向动力响应的影响。最后,采用有限元软件ANSYS对试验模型和工况进行数值模拟,验证了试验结果的可靠性。研究成果可为框筒结构高层建筑的抗震性能研究提供参考。
Abstract
To investigate the dynamic response of a frame-core tube structure under the excitation of multi-direction seismic waves, with the consideration of soil-structure interaction (SSI) effect, shaking table tests were conducted on a SSI model and a fix-based (FB) model, with its superstructure of 20 floors frame-core tube construction.The differences of natural frequency, damping ratio, and mode shape between the SSI and FB models were analyzed under different conditions by the modal identification using the test data.The difference of dynamic responses of the SSI model in horizontal direction between the excitation of single horizontal direction and multi-direction seismic waves was analyzed by comparing the peak acceleration, maximum story displacement, maximum story drift, and maximum dynamic strain of the superstructure in horizontal direction under different seismic magnitudes.The influence of soil on the dynamic responses of the superstructure in vertical direction was analyzed by comparing the peak accelerations and story displacements in vertical direction of the SSI and FB models.Moreover, the test models were simulated by the finite element software (ANSYS) to verify the reliability of the test results.The study results could provide a reference to the study of the seismic performances of frame core tube high-rise buildings.
关键词
多向地震 /
动力相互作用 /
振动台试验 /
动力响应 /
数值模拟
{{custom_keyword}} /
Key words
multi-direction seismic waves /
dynamic interaction /
shaking table test /
dynamic response /
numerical simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张玉梅,宋玉普,张晓东. 多向地震耦合作用下高耸结构土-结构动力相互研究[J]. 工程力学, 2008, 25(2): 154-159.
ZHANG Yu-mei, SONG Yu-pu, ZHANG Xiao-dong. Investigating the soil-structure dynamic interaction for buildings under coupled action of multi-directional earthquake[J]. Engineering Mechanics, 2008, 25(2): 154-159.
[2] 周长东,田苗旺,张许等. 考虑多维地震作用的高耸钢筋混凝土烟囱结构易损性分析[J]. 土木工程学报, 2017, 50(3): 54-64.
Zhou Changdong, Tian Miaowang, Zhang Xu et al. Seismic fragility analysis for high-rise RC Chimney considering multi-dimensional seismic actions[J]. China Civil Engineering Journal, 2017, 50(3): 54-64.
[3] 何志军,丁洁民,陆天天. 上海中心大厦巨型框架-核心筒结构竖向地震作用反应分析[J]. 建筑结构学报, 2014, 35(1): 27-33.
HE Zhijun, DING Jiemin, LU Tiantian. Vertical earthquake action analysis for mega frame-core tube structure of the Shanghai Tower[J]. Journal of Building Structures, 2014, 35(1): 27-33.
[4] Aysegul Durmus, Ramazan Livaoglu. A simplified 3 D.O.F. model of A FEM model for seismic analysis of a silo containing elastic material accounting for soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2015, 10(77): 1-14.
[5] Pallavi Badry, Neelima Satyam. Seismic soil structure interaction analysis for asymmetrical buildings supported on piled draft for the 2015 Nepal earthquake[J]. Journal of Asian Earth Sciences, 2017, 1(133): 102-113.
[6] 杨远威,钱德玲,佟国锋. 超高层混凝土框架-核心筒结构试验研究[J]. 振动与冲击, 2016, 35(16): 181-191.
YANG Yuanwei, QIAN Deling, TONG Guofeng. Experimental study on a super high-rise building with a concrete frame-core tube[J]. Journal of Vibration and Shock, 2016, 35(16): 181-191.
[7] 吕西林,陈跃庆,陈波等. 结构-地基动力相互作用体系振动台模型试验研究[J]. 地震工程与工程振动, 2000, 20(4): 20-29.
LV Xi-lin, CHEN Yueqing, CHEN Bo et al. Shaking table testing of dynamic soil-structure interaction system[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 20-29.
[8] 蒋玉敏,钱德玲,张泽涵等. 框架-核心筒结构与地基基础动力相互作用振动台试验研究[J]. 建筑结构学报, 2016, 37(2): 34-40.
JIANG Yumin, QIAN Deling, ZHANG Zehan et al. Shaking table tests on dynamic interaction of frame-core tube structure and subgrade[J]. Journal of Building Structures, 2016, 37(2): 34-40.
[9] 沈朝勇, 周福霖,黄襄云等. 错位转换高层建筑结构竖向地震作用下的抗震性能研究[J]. 振动与冲击, 2009, 28(8): 128-204.
SHEN Chao-yong, ZHOU Fu-lin, HUANG Xiang-yun et al. Vertical seismic performance of a high-rise building with stagger transfer stories[J]. Journal of Vibration and Shock, 2009, 28(8): 128-204.
[10] 陈健云,周晶,马恒春等. 高耸烟囱结构竖向地震响应的模型试验研究及分析[J]. 建筑结构学报, 2005, 26(2): 87-93.
Chen Jianyun, Zhou Jing, MA Hengchun et al. Study on model test of high-rise chimney subjected to vertical seismic action[J]. Journal of Building Structures, 2005, 26(2): 87-93.
[11] 赵均,徐小燕,朱丹. 飞机库结构考虑多维输入影响的地震反应研究[J]. 土木工程学报, 2012, 45(S1): 192-196.
Zhao Jun, Xu Xiaoyan, Zhu Dan. Seismic responses of the hangar considering the effect of multi-dimensional inputs[J]. China Civil Engineering Journal, 2012, 45(S1): 192-196.
[12] 赵西安. 高层建筑结构在竖向地震作用下的时程分析[J]. 建筑结构学报, 1994, 15(3): 2-10.
Zhao Xi-an. Direct dynamic analysis of tall building structures subjected to vertical earthquake action[J]. Journal of Building Structures, 1994, 15(3): 2-10.
[13] 李春祥,尹文汉,汪英俊. 复杂形体钢框架—钢板核心筒结构的抗震性能研究[J]. 振动与冲击, 2014,33(13):176-182.
Li Chun-xiang, Yin Wen-han, Wang Ying-jun. Seismic performance of a complex shape steel frame-steel plate shear wall core tube structure[J]. Journal of Vibration and Shock, 2014, 33(13): 176-182.
[14] 郑山锁,张艺欣,秦卿等. RC框架核心筒结构的地震易损性研究[J]. 振动与冲击, 2016, 35(23): 106-113.
Zheng Shansuo, Zhang Yixin, Qin Qing, et al. Seismic fragility of RC frame-core wall structures[J]. Journal of Vibration and Shock, 2016, 35(23): 106-113.
[15] 焦安亮,李正良.劲性装配式框架核心筒结构抗震性能试验研究[J]. 振动与冲击, 2016, 35(2): 31-38.
Jiao An-liang, Li Zheng-liang. Experimental study on seismic behaviors of precast frame-core tube structures[J]. Journal of Vibration and Shock, 2016, 35(2): 31-38.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}