线性动力分析的一种通用积分格式

王海波,何崇检,贾耀威

振动与冲击 ›› 2019, Vol. 38 ›› Issue (10) : 43-48.

PDF(609 KB)
PDF(609 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (10) : 43-48.
论文

线性动力分析的一种通用积分格式

  • 王海波,何崇检,贾耀威
作者信息 +

General integration scheme for linear dynamic analysis

  • WANG Haibo,HE Chongjian,JIA Yaowei
Author information +
文章历史 +

摘要

针对线性动力状态方程 ,结合泰勒级数展开式和广义精细积分法,提出了一种避免状态矩阵求逆的线性动力分析的通用积分格式。首先,将非齐次项在 时刻利用泰勒公式将其展开成幂级数形式,然后结合广义精细积分法中的递推公式即可求解出非齐次项的动力响应。该方法计算格式统一,易于编程,通过选取幂级数的项数,可得到不同的计算精度。与传统的数值积分法相比,本文方法具有很高的精度、稳定性及适当的效率,可用于求解任意激励下结构的动力响应。

Abstract

For the state equation v?=H?v+r(t) used in describing linear dynamics systems, a general integration scheme was proposed with the combination of the Taylor series expansion and generalized precise time step integration method.The non-homogenous term at the moment of ti+1(i=0, 1, 2, …, n) was developed into a power series by the Taylor formula,and then the dynamic response due to the non-homogenous term was solved by introducing the recursive formula in the generalized precise time step integration method.The algorithm has an uniform computing scheme,which makes the programming simpler.Moreover, the different calculation accuracy can be obtained by selecting the term number of power series.Compared with the traditional numerical integration method, the proposed algorithm has higher precision, better stability and proper efficiency.Therefore ,it can be used to solve the dynamic response of a structure under arbitrary excitation.

关键词

线性动力分析 / 精细积分法 / 泰勒级数 / 递推算法 / 通用格式

Key words

linear dynamic analysis / precise integration method / Taylor's series / recursive algorithm / general scheme

引用本文

导出引用
王海波,何崇检,贾耀威. 线性动力分析的一种通用积分格式[J]. 振动与冲击, 2019, 38(10): 43-48
WANG Haibo,HE Chongjian,JIA Yaowei. General integration scheme for linear dynamic analysis[J]. Journal of Vibration and Shock, 2019, 38(10): 43-48

参考文献

[1] 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994, 34(2): 131-136.
   Zhong Wanxie. On precise time-integration method for structural dynamics [J]. Journal of Dalian University of Technology, 1994, 34(2): 131-136. (in Chinese)
[2] Jiahao Lin, Weiping Shen,Williams F W. A high precision direct integration scheme for structures subjected to transient dynamic loading [J]. Computer & Structures, 1995, 6(1): 120-130.
[3] 顾元宪,陈飚松,张洪武. 结构动力方程的增维精细积分法[J]. 力学学报,2000,32(4):447-456.
   Gu Yuanxian,Chen Biaosong,Zhang Hongwu.Precise time-integration with dimension expanding method[J].Acta Mechanica Sinica,2000,32(4):447-456. (in Chinese)
[4] 张素英,邓子辰. 非线性动力方程的增维精细积分法[J]. 计算力学学报, 2003, 20(4): 423-426.
   Zhang Suying,Deng Zichen. Incremental-dimensional precise integration method for nonlinear dynamic equation[J]. Chinese Journal of Computational Mechanics, 2003, 20(4): 423-426. (in Chinese)
[5] 向宇,黄玉盈,袁丽芸,等. 非线性系统控制方程的齐次扩容精细积分法[J]. 振动与冲击, 2007, 26(12): 40-44.
   Xiang Yu,Huang Yuying,Yuan Liyun,et al. Extended homogeneous capacity high precision integration method for control equation of nonlinear systems[J]. Journal of Vibration and Shock, 2007, 26(12): 40-44. (in Chinese)
[6] 葛根,王洪礼,谭建国. 多自由度非线性动力方程的改进增维精细积分法[J]. 天津大学学报, 2009, 42(2): 113-117.
   Ge Gen,Wang Hongli,Tan Jianguo. Improved increment-dimensional precise integration method for the nonlinear dynamic equation with multi-degree-of-freedom[J]. Journal of Tianjin University, 2009, 42(2): 113-117. (in Chinese)
[7] 张森文,曹开彬. 计算结构动力响应的状态方程直接积分法[J]. 计算力学学报,2000,17(1):94-97.
   Zhang Senwen,Cao Kaibin.Direct integration of state equation method for dynamic response of structure[J]. Chinese Journal of Computational Mechanics, 2000, 17(1): 94-97. (in Chinese)
[8] 汪梦甫,周锡元. 结构动力方程的更新精细积分方法[J]. 力学学报,2004,36(2):191-195.
   Wang Mengfu,Zhou Xiyuan.Renewal precise time step integration method of structural dynamic analysis[J]. Acta Mechanica Sinica,2004,36(2):191-195. (in Chinese)
[9] 任传波,贺光宗,李忠芳. 结构动力学精细积分的一种高精度通用计算格式[J]. 机械科学与技术,2005,24(12):1507-1509.
   Ren Chuanbo,He Guangzong,Li Zhongfang.A high-precision and general computational scheme in precise integration of structural dynamics.Mechanical Science and Technology, 2005,24(12):1507-1509. (in Chinese)
[10] 富明慧,刘祚秋,林敬华. 一种广义精细积分法[J]. 力学学报,2007,39(05):672-677.
    Fu Minghui,Liu Zuoqiu,Lin Jinghua.A generalized precise time step integration method[J]. Acta Mechanica Sinica, 2007,39(05):672-677.(in Chinese)
[11] 储德文,王元丰. 精细直接积分法的积分方法选择[J]. 工程力学,2002,19(06):115-119.
     Chu Dewen,Wang yuanfeng. Integration formula selection for precise direct integration method[J]. Engineering Mechanics,2002,19(06):115-119. (in Chinese)

PDF(609 KB)

Accesses

Citation

Detail

段落导航
相关文章

/