基于多探头全光纤激光干涉测速技术,在分离式Hopkinson压杆系统上,搭建了长杆试件拉氏反分析实验装置,用于研究脆性材料的动态本构关系。为了监测长杆试件轴向质点速度,提出了激光斜入射新方法,并检验了新方法的可行性和准确性。基于一维应力波传播理论,建立了欧拉质点速度与拉格朗日质点速度之间换算关系,对于脆性材料而言,其断裂应变很小,在拉氏反分析时可以忽略两者之间的差异。利用实测的多质点速度时程曲线,通过构建路径线连接整个速度场,再结合零初始条件,实现了拉氏反分析方法的数值求解,获得了脆性材料PMMA的动态应力-应变曲线,并与Hopkinson压杆实验和准静态压缩实验的结果进行了对比。
Abstract
Based on the multi-probe all-fiber laser interference velocity measurement technique, on a split Hopkinson pressure bar system, a Lagrangian inverse analysis test device for long rod specimens was built to study the dynamic constitutive relation of brittle materials. In order to monitor the axial mass point velocity of a long rod specimen, a new method of laser oblique incidence was proposed, and the feasibility and correctness of this new method were verified. Based on the 1-D stress wave propagation theory, the conversion relation between Euler mass point velocity and Lagrange one was established. It was shown that fracture strains are very small for brittle materials, so the difference between Euler mass point velocity and Lagrange one can be neglected. Using multi-mass point velocity time history curves, path lines were constructed to connect the whole velocity field, and then zero initial conditions were combined to realize numerical solving with Lagrangian inverse analysis method, and obtain the dynamic stress-strain relation curve of the brittle material PMMA. This constitutive relation curve was compared with those of Hopkinson pressure bar test and quasi-static state compression test.
关键词
激光干涉测速 /
拉氏反分析 /
质点速度 /
动态本构关系
{{custom_keyword}} /
Key words
Laser interferometry /
Lagrangian inverse analysis /
Particle velocity /
Dynamic constitutive relation.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society[C]. 1949, B 62: 676–700.
[2] Wang Li-li. Foundations of Stress Wave[M]. Elsevier, Amsterdam, 2007.
[3] 平 琦,马芹永,袁 璞. SHPB试验岩石试件应力平衡时间预估分析[J].振动与冲击, 2013, 32(12): 55-60.
PING Qi;MA Qin-yong;;YUAN Pu. Prediction analyses of stress uniformity time in rock SHPB test[J]. Journal of Vibration and Shock, 2013, 32(12): 55-60.
[4] 姜峰,李子沐,王宁昌,郭桦,徐西鹏. 高应变率条件下山西花岗岩的动态力学性能研究[J].振动与冲击,2016,35(8):177-182.
JIANG Feng, LI Zi-mu, WANG Ning-chang, GUO Hua, XU Xi-peng. Research on dynamic characteristics of Shanxi black granite under high strain rate[J]. Journal of Vibration and Shock, 2016, 35(8): 177-182.
[5] Fowles R, Williams R F.Plane stress wave propagation in solids[J]. Journal of Applied Physics, 1970,41: 360-363.
[6] Grady D E. Experimental analysis of spherical wave propagation[J]. Journal of Geophysical Research,1973, 78: 1299-1307.
[7] 陶为俊,浣石,蒋国平.基于最小二乘法的Lagrange分析方法研究[J].振动与冲击, 2012,31(12):98-101.
TAO Wei-jun, HUAN Shi, JIANG Guo-ping. Lagrangian analysis method based on least square[J]. Journal of Vibration and Shock, 2012,31(12):98-101.
[8] 张磊, 胡时胜, 梁宗宪. 利用拉氏分析研究冲击载荷下混凝土应力-应变曲线[J]. 工程力学, 2005, 22(4):163-166.
ZHANG lei, HU Shi-sheng, LIANG Zong-xian. Lagrange analysis of the stress-strain relation of concrete material under impact[J]. Engineering Mechanics, 2005, 22(4):163-166.
[9] 蒋国平,浣石,郝洪,杜永峰, 焦楚杰. 钢纤维高强混凝土材料的气炮试验研究[J].物理学报,2013,62(1):016201.
JIANG Guo-ping, HUAN Shi, HAO Hong, DU Yong-feng,JIAO-Chu-jie. Performance of steel reinforced high strength concrete investigated in the gas gun experiment[J]. Acta Physica Sinica, 2013,62(1):016201.
[10] 蒋国平, 焦楚杰, 肖波齐. 高强混凝土气体炮试验与高压状态方程研究[J]. 物理学报,2012, 61(2):026701.
JIANG Guo-ping, JIAO Chu-jie, Xao Bo-qi. High-pressure state equation of high strength concrete investigated with the gas gun experiment[J]. Acta Physica Sinica, 2012, 61(1): 026701.
[11] 林英睿,王占江,李运良,门朝举.依球面波粒子速度研究材料的本构关系[J].解放军理工大学学报(自然科学版), 2007,8(6):606-610.
LIN Ying-rui,WANG Zhan-jiang, LI Yun-liang, MEN Chao-ju. Constitutive relation using particle velocity data of spherical waves[J]. Journal of PLA University of Science and Technology, 2007, 8(6):606-610.
[12] WANG Li-li, DING Yuan-yuan, YANG Li-ming. Experimental investigation on dynamic constitutive behavior of aluminum foams by new inverse methods from wave propagationn measurements[J]. International Journal of Impact Engineering, 2013, 62:48-59.
[13] Ding YY, Wang SL, Zheng ZJ, Yang LM, Yu JL. Dynamic crushing of cellular materials: A unique dynamic stress-strain state curve[J]. Mechanics of Materials, 100 (2016), 219-231.
[14] 赖华伟,王礼立.用改进的基于质点速度测量的拉格朗日分析方法研究尼龙动态力学特性[J].实验力学, 2011,26(2):221-227.
LAI Hua-wei, WANG Li-li. Nylon dynamic mechanical behavior study through a modified Lagrangian analysis based on particle velocity profile measurement[J]. Journal of Experimental Mechanics, 2011,26(2):221-227.
[15] Barker L M, Hollenback R E. Laser Interferometer for Measuring High Velocities of Any Reflecting Surface[J]. Journal of Applied Physics, 1972, 43(11):4469-4675.
[16] WEN Ji-dong, TAN Hua, HU Shao-lou, MA Yun, WANG Xiang. New all-fiber velocimeter. Review of Scientific Instruments, 2005, 76:093301.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}