一种改进自适应陷波器在齿轮箱振动信号频率估计中的应用

张锋 罗顺安 张勇 林继铭

振动与冲击 ›› 2019, Vol. 38 ›› Issue (11) : 173-179.

PDF(1230 KB)
PDF(1230 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (11) : 173-179.
论文

一种改进自适应陷波器在齿轮箱振动信号频率估计中的应用

  • 张锋 罗顺安 张勇 林继铭
作者信息 +

Application of a modified adaptive notch filter in frequency estimation of gearbox vibration signals

  • ZHANG Feng, LUO Shun’an, ZHANG Yong, LIN Jiming
Author information +
文章历史 +

摘要

针对多级齿轮系统振动主动控制所需参考信号的获取问题,设计一种基于变步长无偏平滑梯度算法的二阶IIR自适应陷波器,以实时振动信号为输入信号,通过调整陷波频率实现对齿轮啮合频率的在线估计,并采用自适应改变陷波器迭代步长的方法提高估计速度和精度,仿真验证了该陷波器相比传统自适应陷波器具有更快的估计速度和更小的稳态误差,与FFT和比值校正FFT两种方法比较,所提陷波器对频率变化具有更好的追踪性能。将两个陷波器串联构成级联陷波器组,通过二级齿轮箱的振动加速度信号对两个啮合基频分别进行在线的实时估计,实验结果显示级联陷波器组能快速且准确地估计对应啮合频率,且能实时追踪由于驱动和负载变动导致的啮合频率变化,证明所提方法在实际应用中的有效性。

Abstract

In order to obtain a reference signal for active vibration control of a multi-stage gear system,a second-order IIR adaptive notch filter based on the variable step-size unbiased plain gradient (VSSUPG) algorithm was designed. Taking a real-time vibration signal as an input signal, the online estimation of gear meshing frequency was realized through adjusting notch frequency, and the adaptively changing the notch filter’s iterative step method was used to improve the estimation speed and accuracy. Simulation results showed that the proposed adaptive notch filter has a faster estimation speed and a smaller steady-state error than those of the traditional adaptive notch filter; compared with FFT and ratio-corrected FFT, the proposed filter has a better tracking performance to frequency changes. A cascaded notch filter set was constructed by connecting two adaptive notch filters in series to do online estimation of two meshing fundamental frequencies using vibration acceleration signals of a two-stage gearbox. The test results showed that the cascaded notch filter set can be used to quickly and correctly estimate the corresponding meshing frequencies, track meshing frequency changes in real time due to driving and load changes, and verify the effectiveness of the proposed method in practical application.

关键词

齿轮系统振动 / 频率估计 / IIR自适应陷波器 / VSSUPG

Key words

gear system vibration / frequency estimation / IIR adaptive notch filter / VSSUPG

引用本文

导出引用
张锋 罗顺安 张勇 林继铭. 一种改进自适应陷波器在齿轮箱振动信号频率估计中的应用[J]. 振动与冲击, 2019, 38(11): 173-179
ZHANG Feng, LUO Shun’an, ZHANG Yong, LIN Jiming. Application of a modified adaptive notch filter in frequency estimation of gearbox vibration signals[J]. Journal of Vibration and Shock, 2019, 38(11): 173-179

参考文献

[1]  Haarnoja T, Tammi K, Kai Z. Exact LTP Representation of the Generalized Periodic-Reference FxLMS Algorithm[J]. IEEE Transactions on Signal Processing, 2013, 62(1):121-130.
[2]  刘锦春, 何其伟, 朱石坚. 交叉更新参考信号的振动主动控制方法[J]. 西安交通大学学报, 2015, 49(7):49-54.
LIU Jinchun, HE Qiwei, ZHU Shijian. Active Vibration Control Algorithm with Cross-Updating Reference Signal[J]. Journal of Xi'an Jiaotong University, 2015, 49(7):49-54.
[3]  李自强, 李以农, 钟银辉,等. 基于非线性自适应滤波算法的齿轮传动系统振动主动控制[J]. 振动与冲击, 2017, 36(6):181-187.
LI Ziqiang, LI Yinong, ZHONG Yinhui, et al. Nonlinear adaptive filtering algorithm for the active vibration control of gear transmission[J]. Journal of Vibration and Shock, 2017, 36(6):181-187.
[4]  翟晓军, 周波. 一种改进的插值FFT谐波分析算法[J]. 中国电机工程学报, 2016, 36(11):2952-2958.
ZHAI Xiaojun, ZHOU Bo. An Improved Interpolated FFT Algorithm for Harmonic Analysis[J]. Proceedings of the CSEE, 2016, 36(11):2952-2958.
[5]  Nie W K, Feng D Z, Xie H, et al. Improved MUSIC algorithm for high resolution angle estimation[J]. Signal Processing, 2016, 122:87-92.
[6]  徐德树, 魏立新, 马明明,等. 基于粒子群算法的FFT信号分析方法及应用[J]. 矿冶工程, 2016, 36(1):104-107.
XU Deshu, WEI Lixin, MA Mingming, et al. Method and Application of FFT Signal Analysis Based on Particle Swarm Optimization Algorithm[J]. Mining and Metallurgical Engineering, 2016, 36(1):104-107.
[7]  闫锋刚, 刘秋晨, 邵多,等. 基于谱分解的降阶求根MUSIC算法[J]. 电子与信息学报, 2017(10):2421-2427.
YAN Fenggang, LIU Qiuchen, SHAO Duo, et al. Reduced-dimension Root-MUSIC Algorithm Based on Spectral Factorization[J]. Journal of Electronics and Information Technology, 2017(10):2421-2427.
[8]  Bahn W, Kim T I, Lee S H, et al. Resonant frequency estimation for adaptive notch filters in industrial servo systems[J]. Mechatronics, 2017, 41:45-57.
[9]  Tan L, Jiang J.Novel adaptive IIR filter for frequency estimation and tracking [DSP Tips&Tricks][J]. Signal Processing Magazine IEEE, 2009, 26(6):186-189.
[10]  Zhou J, Li G. Plain gradient based direct frequency estimation using second-order constrained adaptive IIR notch filter[J]. Electronics Letters, 2004, 40(5):351-352.
[11]  Punchalard R, Lorsawatsiri A, Koseeyaporn J, et al. Adaptive IIR notch filters based on new error criteria[J]. Signal Processing, 2008, 88(3):685-703.
[12]  Loetwassana W, Punchalard R, Koseeyaporn J, et al. Unbiased plain gradient algorithm for a second-order adaptive IIR notch filter with constrained poles and zeros[J]. Signal Processing, 2010, 90(8):2513-2520.
[13] Hinamoto Y,Nishimura S.Normal-form state-space realization of single frequency IIR notch filters and its application to adaptive notch filters[C]// Circuits and Systems. IEEE, 2017.
[14] Shen T, Li H, Zhang Q, et al. A Novel Adaptive Frequency Estimation Algorithm Based on Interpolation FFT and Improved Adaptive Notch Filter[J]. Measurement Science Review, 2017, 17(1).
[15] 黄全振, 朱晓锦, 高志远,等. 改进型FULMS算法实现压电机敏框架结构振动抑制[J]. 振动与冲击, 2015(11):23-28.
HUANG Quanzhen, ZHU Xiaojin, GAO Zhiyuan, et al. Vibration suppression of a piezoelectric smart framework structure based on improved FULMS algorithm[J]. Journal of Vibration and Shock, 2015(11):23-28.
[16] Ren C, Wang Z, Zhao Z. Adaptive Combination of Affine Projection and NLMS Algorithms Based on Variable Step-Sizes[J]. Digital Signal Processing, 2016, 59:86-99.
[17] Jahromi M N S, Salman M S, Hocanin A, et al. Convergence analysis of the zero-attracting variable step-size LMS algorithm for sparse system identification[J]. Signal Image & Video Processing, 2015, 9(6):1353-1356.
[18] 徐传燕, 丁康, 林慧斌,等. 离散频谱分析比值校正法幅值和相位的抗噪性分析[J]. 振动工程学报, 2011, 24(6):633-638.
XU Chuanyan, DING Kang, LIN Huibin, et al. Noise influence on amplitude and phase estimation accuracy by interpolation method for discrete spectrum[J]. Journal of Vibration Engineering, 2011, 24(6):633-638.
[19] 冯婕, 肖骏雄, 韩纪龙,等. 基于幅度比值的低复杂度频偏估计算法[J]. 光学学报, 2015, 35(5):104-109.
FENG Jie, XIAO Junxiong, HAN Jilong, et al. Low Complexity Frequency Offset Estimation Algorithm Based on Amplitude Ratio[J]. Acta Optica Sinica, 2015, 35(5):104-109.
[20] 刘锦春, 何其伟, 朱石坚,等. 一种反馈式自适应振动控制方法研究[J]. 振动与冲击, 2016, 35(16):135-141.
LIU Jinchun, HE Qiwei, ZHU Shijian, er al. An adaptive feedback vibration control algorithm[J]. Journal of Vibration and Shock, 2016, 35(16):135-141.

PDF(1230 KB)

377

Accesses

0

Citation

Detail

段落导航
相关文章

/