本文基于结构平衡稳定状态的物理意义,提出了结构外刚度和内刚度的概念,得到了结构临界稳定状态表达式,利用框架重复单元推导了框架结构整体抗侧刚度的计算公式,获得了可直接计算框架临界承载力的简单实用的计算公式。该公式避免了传统计算长度系数法逐个构件验算的不便,而且可很好地考虑同层柱之间的相互支援以及层与层的支援作用,避免了计算长度系数法可能因此造成的不合理设计,弥补了规范计算长度系数法的不足。算例计算结果表明:该方法具有很好的精度及准确性,而且对复杂的框架结构也具有很好的适用性,可供工程设计及理论计算使用。
Abstract
Based on the physical meaning of the equilibrium stable state of the structure, the concepts of the external stiffness and the internal stiffness of the structure were put forward, the expression of the critical stability state of the structure was obtained, and the calculating formula of the whole lateral stiffness of the frame structure was derived by using the story repeating element. A simple and practical formula which could calculate the critical bearing capacity of frame directly was obtained. This formula avoids the inconvenience of the traditional method of calculating length coefficient in checking each component, and can well consider the mutual support between columns in the same layer and the supporting action between different layers, thus avoiding the unreasonable design that may be caused by the method of calculating length factor. The deficiency of the length coefficient method in the code is made up. It was shown in the numerical examples that the method has good accuracy and accuracy, and has good applicability to complex frame structure. It can be used in engineering design and theoretical calculation.
关键词
外刚度 /
内刚度 /
框架结构楼层重复单元 /
整体抗侧刚度 /
临界承载力
{{custom_keyword}} /
Key words
External stiffness /
Internal stiffness /
Story repeating element of frame structure /
Overall lateral stiffness /
Critical bearing capacity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Chen W F, Lui E M. Stability Design of steel frames[M]. Boca Raton: CRC Press, 1991: 39—144.
[2] 陈冀.钢结构稳定理论与设计[M].北京:科学出版社,2006:138—173
Chen Ji. Stablity of steel structures theory and design [M]. Beijing: Science Press,2006: 138—173.
[3] GB 50017-2003 钢结构设计规范[S].北京:中国计划出版社,2003
GB50017-2003 Code for design of steel structures [S].Beijing: China Planning Press,2003
[4] 童根树. 钢结构的平面内稳定[M].北京:中国建筑工业出版社,2004:126—188
Tong Genshu. In-plane stability of steel structures [M]. Beijing: China Architecture & Buil-ding Press,2004: 126— 188
[5] 郝际平,田炜烽,王先铁.多层有侧移框架整体稳定的简便计算方法[J].建筑结构学报,2011,32(11):183~188
Hao Jiping, Tian Weifeng, Wang Xiantie. Simple calculation method for overall stability of multi-story sway frame [J]. Journal of Building Structures, 2011,32(11):183—188.
[6] 范国玺,宋玉普,王立成.钢筋混凝土框架结构梁柱中节点动态力学性能试验研究[J].振动与冲击,2015,34(12):57—64
Fan Guoxi, Song Yupu,Wang Licheng. Experimental study on dynamic mechanical properties of interior RC frame beam-column joints [J]. Journal of vibration and shock, 2015,34(12):57—64
[7] 梁启智.高层建筑结构分析和设计[M],华南理工大学出版社,1992: 494—528
Liang Qizhi. Tall building structure analysis and design [M], South China University of Technology Press, 1992: 494—528
[8] 朱杰江,王颖,王振波.框架结构的等效剪切刚度[J].河海大学常州分校学报,2001,15(1):15~18
Zhu Jiejiang, Wang Ying, Wang Zhenbo. Equivalent shear stiffness of frame structure [J]. Journal of Hehai Institute Changzhou School,2001,15(1):15~18
[9] Adolf Lubbertus Bouma.Mechanik schlanker Tragwerke: ausgewählte beispiele der praxis[M]. Springer-Verlag Berlin Heidelberg,1993:41~50
[10] 童根树,施祖元.计算长度系数的物理意义及对各种钢框架稳定设计方法的评论[J].建筑钢结构进展,2004,6(4):1~8
Tong Genshu, Shi Zuyuan. The physical significance of the length coefficient method and the comments on stability design methods of steel frames [J]. Progress in Steel Building Structures, 2004,6(4):1~8
[11] James E Ambrose.Simplified Design of Steel Structures[M].John Wiley Sons,1997:2-23
[12] 包世华.新编高层建筑结构[M].北京:中国水利水电出版社,2013:87—97
Bao Shihua. New tall building structure [M]. Beijing: China Waterpower Press, 2013: 87—97
[13] 耿旭阳,周东华.确定受压柱计算长度的通用图表[J].工程力学,2014,31(8):154—160
Geng Xuyang, Zhou Donghua. Universal charts for determining the effective length of compres- sion columns [J]. Engineering Mechanics, 2014,31(8):154—160
[14] 陈健云,李静,韩进财等.地震动强度指标与框架结构响应的相关性研究[J].振动与冲击,2017,36(3):105—114
Chen Jianyun, Li Jing, Han Jincai et al. Correlation between ground motionintensity indexes and seismic responses of frame structures [J]. Journal of vibration and shock, 2017,31(8):154—160
[15] 陈绍番.钢结构稳定设计指南[M].北京:中国建筑工业出版社,2004:146~188
Chen Shaofan. Guide to stability design of steel structures [M]. Beijing: China Architecture & Buil-ding Press,2004: 146~ 188
[16] 陈坤,川口健一.柔性张拉构件补强下细长结构稳定性的基础性研究[J].建筑结构学报,2015,36(5):140~149
Chen kun, Kawaguchi Ken’ichi. Preliminary study on stiffening effect of flexible tensioned components to the stability of slender structure[J]. Journal of Building Structures, 2015,36(5):140—149.
[17] 慕青松.考虑压缩效应的简支弹性杆受压屈曲的理论分析[J].工程力学,2013,30(11):185—192
Mu Qingsong. Theoretic analysis on the buckling of a simply supported compressible elastic rod under the axial pressure [J]. Engineering Mechanics, 2013,30(11):185—192
[18] 贡金鑫,王莹.基于有效刚度的空间框架结构几何非线性分析[J].大连理工大学学报,2015,55(2):157~165
Gong Jinxin, Tian Weifeng, Wang Xiantie. Geometric Nonlinear Analysis of Spatial Frame Structure Based on Effective Stiffness [J]. Journal of Dalian University of technology, 2015,55(2):157—165
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}