针对冲击地压下巷道支护设备防冲能力差,易遭受冲击性失效问题,提出一种防冲支架用加肋板圆管式吸能防冲构件,通过仿真和试验方法分析不同肋板厚度和布置形式下加肋板圆管式构件以及无肋板圆管构件的吸能防冲特性,结果表明:肋板的布置抑制了圆管构件压溃屈曲的圆环模式变形和欧拉失稳,使变形趋于稳定;随着肋板厚度增加,构件压溃变形阈值、吸能量、反力平均水平增加,反力波动增大,可用变形让位距离减小;一字形肋板布置构件变形普遍不规范,十字形构件出现开裂和偏斜变形现象,Y字形、肋板厚度较小构件变形普遍较规范,从一字形、Y字形到十字形构件,其变形阈值、吸能量、反力平均水平基本有所增加,可用变形让位距离减小;Y字形、肋板厚8 mm的构件为ZHD6000型防冲支架较理想的吸能防冲构件。
Abstract
Aiming at the problem of roadway support equipment’s poor anti-impact capacity and being vulnerable to shock and failure under rock burst, anti-impact hydraulic supports using tubular type energy-absorbing and anti-impact members with stiffened plate were proposed. Through simulation and tests, energy-absorbing and anti-impact characteristics of tubular type members with stiffened plate of different thicknesses and layout forms and those without stiffened plate were analyzed. The results showed that using stiffening plate suppresses ring mode deformation and Euler instability due to tubular member’s buckling and collapse to make deformations be stable; with increase in stiffened plate thickness, member’s collapse deformation threshold value, energy absorption and mean reaction force increase, but the fluctuation of reaction force increases and the free-to-position distance of available deformation decreases; the deformation of members with “- ” shaped stiffened plate is irregular generally, members with “+” shaped stiffened plate have crack and skew deformation, members with Y-shaped stiffened plate and those with stiffened plate of smaller thickness have regular deformation generally; from members with “ -” shaped stiffened plate, those with Y-shaped one to those with “+” shaped one, their deformation threshold values, energy absorptions and mean reaction forces gradually increase, and their available deformation’s free-to-position distances decrease; energy-absorbing and anti-impact members with Y-shaped stiffened plate of 8 mm thickness are more ideal for ZHD6000 type anti-impact hydraulic supports.
关键词
冲击地压 /
吸能防冲构件 /
吸能防冲特性 /
防冲支架
{{custom_keyword}} /
Key words
Rock burst /
Energy-absorbing and anti-impact component /
Energy-absorbing and anti-impact property /
Anti-impact hydraulic support
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 兰天伟. 大台井冲击地压动力条件分析与防治技术研究[D].阜新:辽宁工程技术大学, 2011:6.
Lan Tianwei. Research on the geodynamic condition and prevention technology of rockburst in datai mine[D]. Fuxin: Liaoning Technical University, 2011:6.
[2] 杜学领,姚旺,李杨.2011-2013年4起典型冲击地压事故分析[J].煤矿安全,2015,46(1):183-189.
Du Xueling, Yao Wang, Li Yang. Analysis of 4 typical rock burst accidents from 2011 to 2013 in China[J]. Safety in Coal Mines, 2015, 46(1): 183-189.
[3] 张寅.强冲击危险矿井冲击地压防治[M].徐州:中国矿业大学出版社,2010:6-7.
Zhang Yan. Prevention and control of rock burst in mine with strong shock hazard[M]. Xuzhou: China University of Mining and Technology press, 2010:6-7.
[4] 李兆福,张升祥,曹伟,等.抗冲击巷道液压支架研制与应用[J].煤炭科学技术,2007,35(1):54-58.
Li Zhaofu, Zhang Shenxiang, Cao Wei, et al. Development and application of antibumping gateway hydraulic powered support[J]. Coal Science and Technology, 2007, 35(1): 54-58.
[5] 于志宏,关文涛.采取综合措施使用防冲巷道支架保证严重冲击地压区安全生产[J].露天采矿技术,2013,5:81-84.
Yu Zhihong, Guan Wentao. Take comprehensive measures and use the anti-roadway antibumping gateway hydraulic powered support to ensure the safety production of severe rock burst area[J]. Opencast Mining Technology, 2013, 5: 81-84.
[6] 潘一山,吕祥锋,李忠华.吸能耦合支护模型在冲击地压巷道中应用研究[J].采矿与安全工程学报,2011,28(1):6-7.
Pan Yishan, Lv Xiangfeng, Li Zhonghua. The model of energy-absorbing coupling support and its application in rock burst roadway[J]. Journal of Mining & Safety Engineering, 2011, 28(1): 6-7.
[7] 王凯兴,潘一山.冲击地压矿井的围岩与支护统一吸能防冲理论[J].岩土力学,2015,36(9) : 2585-2590.
Wang Kaixing, Pan Yishan. An undified theory of energy absorption and anti-impact for surrounding rock and support in rock burst mine[J]. Rock and Soil Mechanics, 2015, 36(9): 2585-2590.
[8] 潘一山,肖永惠,李忠华,等.冲击地压矿井道支护理论研究及应用[J].煤炭学报,2014,39(2):222-228.
Pan Yishan, Xiao Yonghui, Li Zhonghua, et al. Study of tunnel support theory of rockburst in coal mine and its application[J]. Journal of China Coal Society, 2014, 39(2): 222-228.
[9] 潘一山,肖永惠,李国臻,等.一种矿用消波耗能缓冲装置设计及实验初探[J].岩石力学与工程学报,2012,31(4):649-655.
Pan Yishan, Xiao Yonghui, Li Guozhen, et al. Design of a buffer device for absorbing waves and energy in mining and its primary ex-periments[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 649-655.
[10] 杨巨文,唐 治,何 峰,等.矿用扩径式吸能构件吸能防冲特性研究[J]. 振动与冲击,2015,34(8):134-138.
Yang Juwen, Tang Zhi, He Feng, et al. Energy absorption and anti-impact properties of mine diameter-expanding energy absorption components[J]. Journal of vibration and shock, 2015, 34(8): 134-138.
[11] 唐 治,潘一山,朱小景,等.液压立柱内外翻转式吸能防冲构件特性数值分析[J]. 中国安全生产科学技术,2015,11(7):74-79.
Tang Zhi, Pan Yishan, Zhu Xiaojing, et al. Numerical analysis on properties of inside-outside overturning energy absorption and anti-impact components of hydraulic column[J]. Journal of Safety Science and Technology, 2015, 11(7): 74-79.
[12] 马箫,潘一山,张建卓,等.板块倾角对折棱管防冲支护装置吸能特性的影响[J]. 中国安全科学学报,2017,27(1):122-127.
Ma Xiao, Pan Yishan, Zhang Jianzhuo. Influence of plate inclination angle on energy absorption characteristics of pre-folded edge tube anti-scour and supporting device[J]. China Safety Science Journal, 2017, 27(1): 122-127.
[13] 唐 治,潘一山,李 祁,等.矿用防冲方形折纹薄壁构件吸能特性数值分析[J].振动与冲击,2014,33(23):87-91.
Tang Zhi, Pan Yishan, Li Qi, et al. Numerical analysis of energy-absorption properties of a thin-walled component with square folds for rock burst prevention in mine[J]. Journal of vibration and shock, 2014, 33(23): 87-91.
[14] 辽宁工程技术大学.一种煤矿用高速吸能防冲让位液压支架:中国,CN 102418538 B[P],2013-12-04.
Liaoning Technical University. High-speed energy absorption anti-impact retreat hydraulic support for coal mine: China, CN 102418538 B[P], 2013-12-04.
[15] 祝恩淳,Mandal P,Calladine C R.轴压圆柱薄壳的屈曲分析[J].土木工程学报,2001,34(3):18-22.
Zhu Enchun, Mandal P, Calladine C R. Analysis of bucking of thin cylindrical shells under axial compression[J]. China Civil Engineering Journal, 2001, 34(3): 18-22.
[16] GB 25974.2-2010. 煤矿用液压支架二部分:立柱和千斤顶技术条件[S].北京:中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2011.
GB 25974.2-2010. Powered support for coal mine—Part 2: Specification for power set legs and rams[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China & Standardization administration of the People’s Republic of China, 2011.
[17] GB 25974.2-2010.煤矿用液压支架第三部分:液压控制系统及阀[S].北京:中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2011.
GB 25974.2-2010. Powered support for coal mine—Part 3: The hydraulic control system and valves[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China & Standardization administration of the People’s Republic of China, 2011.
[18] 唐 治,潘一山,韩雪峰,等.矿用六边形折痕构件吸能防冲特性数值分析[J].安全与环境学报,2015,15(5):54-58.
Tang Zhi, Pan Yishan, Han Xuefeng, et al. Numerical analysis of the mining hexagonal crease components and their energy absorption and anti-impact features[J]. Journal of Safety and Environment, 2015, 15(5): 54-58.
[19] (澳)Lu G X,Yu X T著.材料与结构的能量吸收.华云龙译.北京:化学工业出版社,2005.
Lu G X, Yu X T, et al. Energy absorption of materials and structures. Hua Y L translation. Beijing: Chemical industry press, 2005.
[20] Alexander J M. An approximate analysis of the collapse of thin cylindrical shells under axial load[J]. Quarterly Journal of Mechanics & Applied Mathematics, 1960, 13(1): 10-15.
[21] Pugsley A, Macaulay M. The large scale crumpling of thin cylindrical columns[J]. Quarterly Journal of Mechanics & Applied Mathematics, 1960, 13(1): 1-9.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}