为了探明车型及编组对地铁环境振动的影响及水平,应用薄片有限元-无限元耦合模型及周期性车轨动力耦合模型对常用地铁车型及编组组合方式下列车运营诱发的环境振动进行综合分析及比较。分析结果表明:①不同车型及编组地铁列车诱发环境振动的时程、频谱、三分之一倍频程谱及地表Z振级衰减曲线具有类似的趋势,但相应量值有所差别;②地铁车型及编组对5Hz以下的低频环境振动有较大影响;③当保持其他因素不变,将6节编组列车扩展为8节编组列车,或将动拖车组合编组改变为全动车编组,抑或选用A型车(相较于选用B型车)为运营车辆,都会造成地表Z振级产生多达约1.5dB的增加;④车型及编组的不同组合对地表Z振级的影响最大可达3.2dB。
Abstract
In order to investigate effects of train type and formation on metro operation induced environmental vibration, the sliced finite element-infinite element coupled model and the periodic train-track coupled model were adopted to comprehensively analyze metro operation induced environmental vibration under conditions of usually used train types and formations. The analysis results showed that under conditions of different train types and formations, metro operation induced environmental vibration’s time histories, frequency spectra, 1/3 octave spectra and Z-vibration level attenuation curves of ground surface have similar trends, but their corresponding magnitudes are different; train type and formation have larger effects on low frequency environmental vibration within the frequency range of less than 5 Hz; when other factors keep unchanged, expanding a 6-compartment train into a 8-compartment one, or changing a motor car-trailer combination train into a full motor car train, or adopting type A train not type B one as the operation train cause the ground surface Z-vibration level to increase by up to 1.5 dB; the maximum effect of different combinations of metro train type and formation on ground surface Z-vibration levels can reach 3.2 dB.
关键词
地铁 /
环境振动 /
列车车型 /
列车编组 /
薄片有限元-无限元耦合模型 /
周期性车轨动力耦合模型
{{custom_keyword}} /
Key words
metro /
environmental vibration /
train type /
train formation /
sliced finite element-infinite element coupling model /
periodic train-track coupling model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘维宁, 马蒙, 王文斌. 地铁列车振动环境响应预测方法[J]. 中国铁道科学, 2013, 34(4): 110-117.
LIU Wei-ning, MA Meng, WANG Wen-bin. Prediction method for subway train-induced environmental vibration responses[J]. Journal of China Railway Science, 2013, 34(4): 110-117.
[2] 马蒙,刘维宁,丁德云,等. 地铁列车振动对精密仪器影响的预测研究[J]. 振动与冲击,2011,30(3):185-190.
MA Meng, LIU Wei-ning, DING De-yun, et al. Prediction of influence of metro trains induced vibrations on sensitive instruments[J]. Journal of vibration and shock, 2011,30(3):185-190.
[3] Degrande G, Clouteau D, Othman R, et al. A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation [J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 645-666.
[4] Degrande G, Schevenels M, Chatterjee P, et al. Vibrations due to a test train at variable speeds in a deep bored tunnel embedded in London clay[J]. Journal of Sound and Vibration, 2006, 293(3-5): 626-644.
[5] 刘维宁,夏 禾,郭文军. 地铁列车振动的环境响应[J]. 岩石力学与工程学报,1996,15(增1): 586–593.
LIU Wei-ning, XIA He, GUO Wen-jun. Study of vibration effects of underground trains on surrounding environments[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(Supp.1): 586–593.
[6] 徐忠根,刘浪静. 广州市地铁一号线振动传播对环境影响的测定与分析[J]. 环境技术,2002, 20(4): 12-14.
XU Zhong-gen, LIU Lang-jing. Environment Vibration Measurement and Analysis of First Line Guangzhou Subway[J]. Environmental Technology, 2002, 20(4): 12-14.
[7] 马龙祥. 基于无限-周期结构理论的车轨耦合及隧道-地层振动响应分析模型研究[D].北京: 北京交通大学, 2014.
MA Long-xiang. Study on the Model of Coupled Vehicle & Track and the Analysis Model for Tunnel-ground Vibration Response based on the Periodic-infinite Structure Theory[D]. Beijing: Beijing Jiaotong University, 2014.
[8] 杨麒陆,豆银玲,王平. 地铁提速对减振垫浮置板轨道振动特征的影响分析[J]. 铁道标准设计, 2017, 61(10): 11-15.
YANG Qi-lu, DOU Yin-ling, WANG Ping. Analysis of Subway Speed-increasing Influence on Vibration Characteristics of Damping Pad Floating Slab Track[J]. Railway standard design, 2017, 61(10): 11-15.
[9] 熊超华,雷晓燕.正交试验下地铁诱发的环境振动影响分析[J]. 噪声与振动控制, 2015, 35(1): 169-175.
XIONG Chao-hua, LEI Xiao-yan. Influencing Factors Analysis for Environmental Vibration Induced by Subway Operations Based on Orthogonal Experiments[J]. Noise and Vibration Control, 2015, 35(1): 169-175.
[10] 黄强,黄宏伟,张锋,等. 饱和软土层地铁列车运行引起的环境振动研究[J]. 岩土力学, 2015, 36(增1): 563-567.
HUANG Qiang, HUANG Hong-wei, ZHANG Feng, et al. Research on environmental vibration response of soft saturated soil due to moving metro train[J]. Rock and Soil Mechanics, 2015, 36(Supp.1): 563-567.
[11] 中华人民共和国环境保护部. HJ453-2008环境影响评价技术导则──城市轨道交通[S]. 北京: 中国环境科学出版社, 2008.
[12] 马蒙,刘维宁,王文斌,等. 考虑持续时间因素的铁路环境振动影响评价[J]. 振动与冲击, 2016, 35(10): 207-211.
MA Meng, LIU Wei-ning, WANG Wen-bin, et al. Evaluation of train-induced environmental vibrations considering the factor of exposure time[J]. Journal of vibration and shock, 2016, 35(10): 207-211.
[13] 熊超华, 雷晓燕. 地铁运营诱发的环境振动对南昌八一起义纪念馆的影响分析[J]. 城市轨道交通研究, 2015, 18(11): 68-72, 79.
XIONG Chao-hua, LEI Xiao-yan. Influence of the Environmental vibration Induced by Subway on Nanchang Bayi Memorial Hall[J]. Urban Mass Transit, 2015, 18(11): 68-72, 79.
[14] 马龙祥,刘维宁,刘卫丰. 移动荷载作用下周期支撑轨道结构振动研究[J].中国铁道科学,2013, 34(1): 1-7.
MA Long-xiang, LIU Wei-ning, LIU Wei-feng. Study on Vibration of Periodic Supported Track Structure under Moving Loads[J]. China Railway Science, 2013, 34(1): 1-7.
[15] 马龙祥,刘维宁,吴宗臻. 轨道结构上轮对相互影响系数的解析求法[J]. 中南大学学报(自然科学版), 2014, 45(5): 1635-1641.
MA Long-xiang, LIU Wei-ning, WU Zong-zhen. Analytical method for solving wheelsets’ interaction coefficient on track structure[J]. Journal of Central South University (Science and Technology), 2014, 45(5): 1635-1641.
[16] 马龙祥,刘维宁,刘卫丰,等. 地铁列车振动环境影响预测的薄片有限元–无限元耦合模型[J]. 岩石力学与工程学报,2016, 35(10): 2131-2141.
MA Long-xiang, LIU Wei-ning, LIU Wei-feng, et al. Sliced finite element-infinite element coupling model for predicting environmental vibration induced by metro train[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2131-2141.
[17] 马龙祥,刘维宁,蒋雅君,等. 基于薄片有限元-无限元耦合模型的地铁列车振动环境影响分析[J]. 振动与冲击, 2017, 36(15): 111-117.
MA Long-xiang, LIU Wei-ning, JIANG Ya-jun, et al. Metro train-induced vibration influences on surrounding environments based on sliced finite element-infinite element coupled model[J]. Journal of vibration and shock, 2017, 36(15): 111-117.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}