最优参数MCKD与ELMD在轴承复合故障诊断中的应用研究

杨 斌1,张家玮1,樊改荣2,王建国1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (11) : 59-67.

PDF(1457 KB)
PDF(1457 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (11) : 59-67.
论文

最优参数MCKD与ELMD在轴承复合故障诊断中的应用研究

  • 杨 斌1,张家玮1,樊改荣2,王建国1
作者信息 +

Application of OPMCKD and ELMD in bearing compound fault diagnosis

  • YANG Bin1  ZHANG Jiawei1  Fan Gairong2  WANG Jianguo1
Author information +
文章历史 +

摘要

机械 设备中滚动轴承复合故障的情况普遍存在。针对多种故障难分离和提取的问题,提出了基于最优参数最大相关峭度解卷积(Optimal parameter maxim correlated kurtosis deconvolution,OPMCKD)与总体局部均值分解方法(Ensemble Local Mean decomposition ELMD)相结合的轴承复合故障诊断方法。首先利用排列熵值、包络谱稀疏度分别筛选MCKD中的最优滤波器长度L与冲击周期T,提取滚动轴承主故障;然后通过ELMD方法将非平稳信号分解为若干个分量,筛去主故障信息后,再次利用最优参数MCKD进行次故障诊断。通过对轴承信号的分析,验证了该方法能有效分离复合故障信号,具有一定的实用性。

Abstract

Compound faults of rolling bearings exist ubiquitously in mechanical equipment. Aiming at problems of multi-fault being difficult to separate and extract, a bearing compound fault diagnosis method based on the optimal parameter maximum correlated kurtosis deconvolution (OPMCKD) and the ensemble local mean decomposition (ELMD) was proposed. Firstly, the optimal filter length L and the shock period T in OPMCKD were screened, respectively using the permutation entropy values and the envelope spectrum sparsity to extract the main fault in rolling bearing. Then ELMD method was used to decompose nonstationary fault vibration signals into several components. After screening out the main fault information, OPMCKD was used to perform the secondary fault diagnosis. Through analyzing actual bearings’ fault vibration signals, it was shown that OPMCKD and ELMD can be used to effectively separate bearing compound fault signals, and have a certain practicability.

关键词

最优参数最大相关峭度解卷积 / 总体局部均值分解 / 复合故障 / 故障诊断

Key words

optimal parameter maxim correlated kurtosis deconvolution / Ensemble Local Mean decomposition / compound fault diagnosis / fault diagnosis

引用本文

导出引用
杨 斌1,张家玮1,樊改荣2,王建国1. 最优参数MCKD与ELMD在轴承复合故障诊断中的应用研究[J]. 振动与冲击, 2019, 38(11): 59-67
YANG Bin1 ZHANG Jiawei1 Fan Gairong2 WANG Jianguo1. Application of OPMCKD and ELMD in bearing compound fault diagnosis[J]. Journal of Vibration and Shock, 2019, 38(11): 59-67

参考文献

[1] 陈海周,王家序,汤宝平,等. 基于最小熵解卷积和Teager能量算子直升机滚动轴承复合故障诊断研究[J]. 振动与冲击,2017,36(09):45-50.
CHEN Haizhou, WANG Jia Xu, TANG Baoping, et al.  helicopter rolling bearing hybid faults diagnosis using minimum entropy deconvolution and Teager energy operator [J]. Journal of Vibration and Shock, 2017,36 (09): 45-50.
[2] 胥永刚,孟志鹏,赵国亮. 基于双树复小波变换的轴承复合故障诊断研究[J]. 仪器仪表学报,2014,35(02):447-452.
XU Yonggang, MENG Zhipeng, ZHAO Guoliang. Study on compound fault diagnosis of rolling bearing based on dual-tree complex wavelet transform [J]. C- hinese Journal of Scientific Instrument, 2014,35 (02): 447-452.
[3]WigginsR A. Minimum Entropy Deconvolution[J]. Geo-exploration, 1978,9(16):21-35.
[4] 胡勇. 基于MCKD-Teager能量算子的滚动轴承故障特征增强[J]. 仪表技术与传感器,2017,(06):120-124.
HU Yong.fault feature enhancement for rolling bearing based on MCKD-Teager energy operator [J]. Instrument Technique and Sensors, 2017, (06): 120-124.
[5] 吕宏强,武志斐,王铁等. 基于AR-MCKD的齿轮点蚀故障特征提取[J]. 机械传动,2017,41(03):109-113.
Lv Hongqiang, WU Zhifei, WANG Tie, et al. fault feature extraction of Gear pitting based on AR-MCKD, [J]. Mechanical Transmission, 2017,41 (03): 109-113.
[6] 任学平,张玉皓,辛向志等. 基于阶次跟踪最大相关峭度反褶积的滚动轴承早期故障诊断[J]. 机械设计与制造,2016,(02):161-164.
REN Xueping, ZHANG Yuhao, XIN Xiangzhi, et al Early fault diagnosis of rolling bearing based on order tracking maximum correlation kurtosis deconvolution [J]. mechanical design and manufacture 2016, (02): 161-164.
[7] 王建东,马增强,张俊甲等. 基于粒子群优化的MCKD算法在轴承故障诊断中的应用[J]. 济南大学学报(自然科学版),2017,31(05):377-382.
WANG Jiandong, MA Qiang, ZHANG Junjia, et al Application of MCKD algorithm based on Particle Swarm Optimization in bearing fault diagnosis [J]. Journal of University of Jinan (Science and Technology), 2017,31 (05): 377-382.
[8] 吕中亮,汤宝平,周忆等. 基于网格搜索法优化最大相关峭度反卷积的滚动轴承早期故障诊断方法[J]. 振动与冲击,2016,35(15):29-34.
Lv Zhongliang, TANG Baoping, ZHOU Yi, et al.Rolling bearing early fault diagnosis  based on maximum correlation kurtosis deconvolution optimized with grid search algorithm [J]. Journal of Vibration and Shock, 2016,35 (15): 29-34.
[9]  Mcdonald G L,Zhao Qing,Zhou M J. Maximun correlated kurtosis deconvolution and application on gear tooth chip fault detection [J].Mechanical Systems and Signal Processing, 2012, (33):237-255.
[10] 朱军. 滚动轴承非平稳信号故障诊断若干方法研究[D].中国科学技术大学,2016.
[11] 王志坚,寇彦飞,王俊元等. 基于最大相关峭度反褶积的齿轮箱复合故障特征提取[J]. 噪声与振动控制,2017,37(03):173-176.
WANG Zhijian, KOU Yanfei, WANG Junyuan et al. [J]. a feature extraction method for gearboxes with compound faults based on mckd[J]. NOISE AND VIBRATION COTROL, 2017,37 (03): 173-176.
[12] 唐贵基,王晓龙. 基于包络谱稀疏度和最大相关峭度解卷积的滚动轴承早期故障诊断方法[J]. 中国机械工程,2015,26(11):1450-1456.
TANG Guiji, WANG Xiaolong.Diagnosis method for rolling bearing incipient faults based on sparsity of envelope spectrum and maximum correlated kurtosis deconvolution[J].Journal of Vibration and Shock , 2015,26 (11): 1450-1456.
[13] Bandt C,Pompe B.Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters,The American Physiological Society,2002,88(17):174102.
[14] Yang Yu,Cheng Junsheng,Zhang Kang. An ensemble local means decomposition method and its application to local rub-impact fault diagnosis of the rotor systems[J].Measurement, 2012,45(3):561-570.
[15] 马新娜,杨绍普. 滚动轴承复合故障诊断的自适应方法研究[J]. 振动与冲击,2016,35(10):145-150.
MA Zhen, YANG Shaopu. Adaptive compound fault diagnosis of rolling bearings [J]. Journal of Vibration and Shock, 2016,35 (10): 145-150.

PDF(1457 KB)

Accesses

Citation

Detail

段落导航
相关文章

/