动力吸振器用于结构减振时,其参数需要经过优化调谐才能获得最优的减振效果。目前,针对用于连续体结构减振的分布式(或多个)动力吸振器还没有很便捷的优化方法。本文研究了用于抑制含阻尼薄板结构基础模态振动的分布式动力吸振器的参数优化方法。利用模态叠加法建立了薄板与分布式动力吸振器的动力学方程,根据动力吸振器的振动特性推导得到了薄板基础模态与吸振器的简化二自由度运动方程,结合含阻尼的线性系统中动力吸振器最优调谐参数的求解方法,最终得到了分布式动力吸振器的解析优化公式。通过数值计算验证了优化公式的有效性。数值计算分析还表明优化公式对分布式动力吸振器抑制薄板结构的低频综合振动有很好的优化效果。
Abstract
When a dynamic vibration absorber (DVA) is used for vibration reduction, its parameters need to be optimized to obtain the optimal vibration reduction effect. At present, there is no simple optimization method for distributed DVAs used for vibration reduction of damped continuous structures. Here, the parametric optimization method for distributed DVAs to suppress vibrations of damped thin plate structures with multiple natural vibration modes was studied. The dynamic equations for a damped thin plate with distributed DVAs were established according to the modal superposition method. Based on vibration characteristics of DVAs, simplified 2-DOF equations of motion for the damped thin plate with DVAs were derived. Combining with the solving method for optimal tuning parameters of DVA in a damped linear system, the analytical optimization formulas for distributed DVAs’ parameters were deduced. Their effectiveness was verified with numerical calculations. Numerical calculation results showed that the deduced optimization formulas have a good optimization effect on distributed DVAs to suppress vibrations with lower frequencies of damped plate structures containing multiple natural vibration modes.
关键词
优化 /
分布式动力吸振器 /
含阻尼薄板 /
减振
{{custom_keyword}} /
Key words
Optimization /
Distributed DVAs /
Damped plates /
Vibration suppression
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Frahm H. Device for damping vibrations of bodies[P]. US Patent Nos. 989, 958, 1911.
[2] Huang Y M, Fuller C R. Vibration and Noise Control of the Fuselage via Dynamic Absorbers[J]. Journal of Vibration & Acoustics, 1998, 120 (2): 496-502.
[3] Zhu S, Yang J, Yan H,et al. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers[J]. Vehicle System Dynamics, 2015, 53: 1296-1314.
[4] 徐振邦, 龚兴龙, 陈现敏. 机械式频率可调动力吸振器及其减振特性[J]. 振动与冲击,2010,29(2): 1-6.
XU Zhen-bang, GONG Xing-long, CHEN Xian-min. Mechanical vibration absorber with tunable resonant frequency and its vibration attenuation characteristics[J]. Journal of Vibration and Shock, 2010,29(2):1-6.
[5] Gardonio P, Zilletti M. Sweeping tuneable vibration absorbers for low-mid frequencies vibration control[J]. Journal of Sound and Vibration, 2015, 354: 1-12.
[6] Nishida E, Koopmann G H. A Method for Designing and Fabricating Broadband Vibration Absorbers for Structural Noise Control[J]. Journal of Vibration and Acoustics, 2007, 129: 397.
[7] 肖和业, 盛美萍, 刘儒林, 等. 变阻尼层复合梁式动力吸振器性能研究[J]. 振动工程学报, 2010, 23(5): 578-584.
XIAO He-ye, SHENG Mei-ping, LIU Ru-lin, et al. Characteristics of dynamic vibration absorber shaped by steel beam with variable cross section rubber layer[J]. Journal of Vibration Engineering, 2010, 23(5): 578-584.
[8] Marano G C, Greco R. Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation[J]. Journal of Vibration and Control, 2010,17: 679-688.
[9] Igusa T, Xu K. Vibration Control Using Multiple Tuned Mass Dampers[J]. Journal of Sound and Vibration, 1994, 175(4): 491-503.
[10] Azoulaya M, Veprikb A, Babitskya V, et al. Distributed absorber for noise and vibration control[J]. Shock and Vibration, 2011, 18: 181–219.
[11] DenHartog J P. Mechanical Vibrations[M]. New York, Dover Publications, Inc., 1985.
[12] Crandall S H, Mark W D. Random Vibration in Mechanical Systems[M]. New York, Academic Press, 1963.
[13] Asami T, Nishihara O, Baz A M. Analytical Solutions to H∞ and H2 Optimization of Dynamic Vibration Absorbers Attached to Damped Linear Systems[J]. Journal of Vibration and Acoustics, 2002, 124: 284.
[14] Jacquot R G. Suppression of Random Vibration in Plates Using Vibration Absorbers[J]. Journal of Sound and Vibration, 2001, 248: 585-596.
[15] Cheung Y L, Wong W O. H∞ and H2 optimizations of a dynamic vibration absorber for suppressing vibrations in plates[J]. Journal of Sound and Vibration, 2009, 320: 29-42.
[16] Dayou J. Fixed-points theory for global vibration control using vibration neutralizer[J]. Journal of Sound and Vibration, 2006, 292: 765-776.
[17] Yang B. Stress, strain and structural dynamics[M]. San Diego, Elsevier Academic Press, 2005.
[18] Chen Y H, Huang Y H. Timoshenko beam with tuned mass dampers and its design curves[J]. Journal of Sound and Vibration, 2004, 278: 873-888.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}