基于线调频小波路径追踪和逐步解调滤波的滚动轴承故障诊断

刘东东,程卫东,温伟刚

振动与冲击 ›› 2019, Vol. 38 ›› Issue (11) : 88-94.

PDF(1212 KB)
PDF(1212 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (11) : 88-94.
论文

基于线调频小波路径追踪和逐步解调滤波的滚动轴承故障诊断

  • 刘东东,程卫东,温伟刚
作者信息 +

Rolling element bearing fault diagnosis based on CPP and stepwise demodulation filtering

  • LIU Dongdong, CHENG Weidong, WEN Weigang
Author information +
文章历史 +

摘要

在变转速工况下诊断滚动轴承故障时,广义解调算法中相位函数的确定依赖转速计等辅助设备。针对这一问题,提出了基于线调频小波路径追踪(Chirplet path pursuit, CPP)和逐步解调滤波的滚动轴承故障诊断方法。瞬时故障特征频率(Instantaneous fault characteristic frequency, IFCF)在包络信号中具有幅值优势,利用这一特点,使用CPP算法从降采样的包络信号中提取IFCF趋势线,构造IFCF的相位函数。针对转频在信号中难以提取这一问题,采用重复估计转频的方式,计算潜在转频的相位函数。根据IFCF和转频的相位函数,构造逐步解调滤波算法,既可以恢复时变频率的周期性,又能降低噪声干扰,避免幅值较小的转频被噪声淹没。根据IFCF和转频在解调频谱的比值,判断故障位置。仿真和实验信号的处理结果证明了算法的有效性。

Abstract

When performing rolling bearing fault diagnosis under time-varying rotating speed condition, the determination of phase function in the generalized demodulation algorithm depends upon tachometer and other auxiliary equipment. Aiming at this problem, a rolling element bearing fault diagnosis method based on the chirplet path pursuit (CPP) and stepwise demodulation filtering was proposed. The instantaneous fault characteristic frequency (IFCF) in envelope signals has the amplitude advantage. Adopting this feature, CPP algorithm was used to extract the trend curve of IFCF from down-sampled envelope signals and construct IFCF’s phase function. Aiming at the problem of bearing instantaneous rotating frequency (IRF) being difficult to extract in signals, the method of repeated estimation of IRF was used to calculate phase functions of potential IRFs. According to phase functions of IFCF and IRF, the stepwise demodulation filtering algorithm was constructed to recover the periodicity of time-varying frequency, reduce noise interference and avoid IRFs with smaller amplitude being submerged. According to the ratio of IFCF to IRF in the demodulated frequency spectrum, the bearing fault location was judged. The effectiveness of the proposed method was verified with the processing results of simulated signals and test ones.

关键词

滚动轴承 / 变转速 / 故障诊断 / 解调算法 / 瞬时故障特征频率

Key words

 rolling element bearing / variable speed / fault diagnosis / demodulation / IFCF

引用本文

导出引用
刘东东,程卫东,温伟刚. 基于线调频小波路径追踪和逐步解调滤波的滚动轴承故障诊断[J]. 振动与冲击, 2019, 38(11): 88-94
LIU Dongdong, CHENG Weidong, WEN Weigang. Rolling element bearing fault diagnosis based on CPP and stepwise demodulation filtering[J]. Journal of Vibration and Shock, 2019, 38(11): 88-94

参考文献

[1] Ming A, Zhang W, Qin Z, et al. Fault feature extraction and enhancement of rolling element bearing in varying speed condition [J]. Mechanical Systems and Signal Processing, 2016, 76-77: 367-379.
[2] 唐贵基, 王晓龙. 变分模态分解方法及其在滚动轴承早期故障诊断中的应用[J]. 振动工程学报, 2016, 29(4): 638-648.
Tang Guiji, Wang Xiaolong. Variational mode decomposition method and its application on incipient fault diagnosis of rolling bearing [J]. Journal of Vibration Engineering, 2016, 29(4): 638-648.
[3] Bonnardot F, Badaoui M, Randall R, et al. Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation) [J]. Mechanical Systems and Signal Processing, 2005, 19(4): 766-785.
[4] Zhao D, Li J, Cheng W. Feature extraction of faulty rolling element bearing under variable rotational speed and gear interferences conditions [J]. Shock and Vibration, 2015, 2015: 1-9.
[5] 彭富强,于德介,武春燕. 基于多尺度线调频基稀疏信号分解的包络解调方法及其在齿轮故障诊断中的应用[J]. 机械工程学报, 2010, 46(12): 1-7.
Peng Fuqiang, Yu Dejie, Wu Chunyan. AM-FM signal extraction method by the sparse signal decomposition [J]. Journal of Mechanical Engineering, 2010, 46(12): 1-7.
[6] 王天杨,李建勇,程卫东. 基于瞬时故障特征频率趋势线和故障特征阶比模板的变转速滚动轴承故障诊断[J]. 振动工程学报, 2015, 28(6): 1006-1014.
Wang Tianyang, Li Jianyong, Cheng Weidong. The instantaneous fault characteristic frequency and fault characteristic order template based fault diagnosis algorithm for rolling bearing under time-varying rotational speed [J]. Journal of Vibration engineering, 2015, 28(6): 1006-2014.
[7] 王天杨,李建勇,程卫东. 基于低次故障特征阶比系数的变转速滚动轴承等效转频估计算法[J]. 机械工程学报, 2015, 51(3): 121-128.
Wang Tianyang, Li Jianyong, Cheng Weidong. Equivalent rotational frequency estimation algorithm of faulty rolling bearing under varying rotational speed based on the lower fault characteristic order coefficient [J]. Journal of Mechanical Engineering, 2015, 51(3): 121-128.
[8] Saavedra P, Rodriguez C. Accurate assessment of computed order tracking [J]. Shock and Vibration, 2006, 13(1): 13-21.
[9] Cheng W, Gao R, Wang J, et al. Envelope deformation in computed order tracking and error in order analysis [J]. Mechanical Systems and Signal Processing, 2014, 48 (1-2): 92-102.
[10] Olhede S, Walden A. A generalized demodulation approach to time-frequency projections for multicomponent signals [J]. Proceedings of the Royal Society A, 2005, 461(2059): 2159-2179.
[11] 程军圣,李宝庆,杨宇. 基于广义解调时频分析和瞬时频率计算的阶次谱方法在齿轮故障诊断中的应用[J]. 振动与冲击,2011, 30(9): 30-34.
Cheng Junsheng, Li Baoqing, Yang YU. Application of order spectrum method based on generalized demodulation time-frequency analysis and instantaneous frequency calculation to gear fault diagnosis [J]. Journal of Vibration and Shock, 2011, 30(9): 30-34.
[12] 皮维, 于德介, 彭富强. 基于多尺度线调频基稀疏信号分解的广义解调方法及其在齿轮故障诊断中的应用[J]. 机械工程学报, 2010, 46(15): 59-64.
Pi Wei, Yu Dejie, Peng Fuqiang. Generalized demodulation method based on multi-scale chirplet and sparse signal decomposition and its application to gear fault diagnosis [J]. Journal of Mechanical Engineering, 2010, 46(15): 59-64.
[13] Zhao D, Li J, Cheng W, et al. Compound faults detection of rolling element bearing based on the generalized demodulation algorithm under time-varying rotational speed [J]. Journal of Sound and Vibration, 2016, 378: 109-123.
[14] Zhao D, Li J, Cheng W, et al. Rolling element bearing instantaneous rotational frequency estimation based on EMD soft-thresholding denoising and instantaneous fault characteristic frequency [J]. Journal of Central South University, 2016, 23(7): 1682-1689.
[15] Wang T, Liang M, Li J, et al. Bearing fault diagnosis under unknown variable speed via gear noise cancellation and rotational order sideband identification [J]. Mechanical Systems and Signal Processing, 2015, 62-63: 30-53.
[16] Candès E,Charlton P,Helgason H. Detecting highly oscillatory signals by chirplet path pursuit[J]. Applied and Computational Harmonic analysis,2008,24(1):14-40.
[17] 刘东东,程卫东,万广通. 基于故障特征趋势线模板的滚动轴承故障诊断[J]. 机械工程学报, 2017, 53(9): 83-91.
Liu Dongdong, Cheng Weidong, Wan Guangtong. Bearing fault diagnosis based on fault characteristic trend template [J]. Journal of Mechanical Engineering, 2017, 53(9): 83-91.
[18] 程卫东,刘东东,赵德尊. 基于线调频小波路径追踪的滚动轴承故障特征提取[J]. 振动与冲击, 2017, 36(13): 155-160.
Cheng Weidong, Liu Dongdong, Zhao Dezun. Fault feature extraction method for rolling bearings based on chirplet path tracing [J]. Journal of Vibration and Shock, 2017, 36(13): 155-160.
[19] Lei Y, Lin J, He Z, et al. Application of an improved kurtogram method for fault diagnosis of rolling element bearings [J]. Mechanical Systems and Signal Processing, 2011, 25(5): 1738-1749.

PDF(1212 KB)

Accesses

Citation

Detail

段落导航
相关文章

/