苏通大跨越塔线体系塔身高、跨度长,强风下钢管中混凝土会因为受拉失效,这些原因使气动弹性模型的设计和分析变得困难。基于刚性模型的边界层风洞试验数据,采用有限元模型分别计算输电塔放松Froude数相似准则,改变输电线弹性刚度和2种变比例输电线模型对风致响应的影响,设计出苏通大跨越的气动弹性模型,进一步通过有限元模型分析钢管混凝土的材料非线性和梯度风高度对风致响应的影响。结果表明:通过增大输电线弹性刚度和采用精确的线长相似比,可以合理地设计出苏通大跨越气动弹性模型;设计风速下考虑钢管混凝土的材料非线性对风致响应影响小,考虑梯度风高度后风致响应减小。
Abstract
The Sutong long-span transmission tower-line system was of tall and long span, and the concrete in the steel tube may be invalidated by pull force in strong wind.These reasons made the design and analysis of its aeroelastic model difficult.Based on the data from the boundary layer wind tunnel test of a rigid model, the influences of loosening Froude number similarity criterion of transmission tower, changing the elastic stiffness of transmission line and two variable ratio transmission line models on the wind-induced responses were analyzed respectively by using the finite element model.Further, its aeroelastic model was designed.The influences of the material nonlinearity of concrete-filled steel tube and gradient wind height on the wind-induced responses were analyzed through the finite element model.The results show that by increasing the elastic stiffness of transmission lines and using the accurate line length similarity ratio, an aeroelastic model of Sutong long span can be designed reasonably; the influence of considering the material nonlinearity of concrete-filled steel tube on the wind-induced responses is small under designed wind speed, and the wind-induced responses decreases with the height of gradient wind.
关键词
塔线体系 /
刚性模型 /
Froude数 /
变比例输电线模型 /
气动弹性模型
{{custom_keyword}} /
Key words
transmission tower-line system /
rigid model /
Froude number /
variable ratio transmission line model /
aeroelastic model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BAYAR D C. Drag coefficients of latticed towers [J]. J Struct Eng, 1986, 112(2): 417-30.
[2] BALL N G, RAWLINS C B, RENOWDEN J D. Wind tunnel errors in drag measurements of power conductors [J]. J Wind Eng Ind Aerod, 1992, 41(1-3): 847-57.
[3] WARDLAW R L, COOPER K R, KO R G. Wind tunnel and analytical investigations into the aeroelastic behaviour of bundled conductors [J]. IEEE Trans Power Appar Syst, 1975, 94(2): 642-54.
[4] 楼文娟, 孙炳楠, 唐锦春. 高耸格构式结构风振数值分析及风洞试验 [J]. 振动工程学报, 1996, 9(3): 108-12.
[4] Lou Wenjuan,Sun Bingnan,Tan Jinchun.Wind tunnel test and numerical computation on wind-induced vibration for tall lattice tower [J].Journal of Vibration Engineering,1996,9(3):318-322.
[5] LOREDO-SOUZA A M, DAVENPORT A G. A novel approach for wind tunnel modelling of transmission lines [J]. J Wind Eng Ind Aerod, 2001, 89(11-12): 1017-29.
[6] LIANG S, ZOU L, WANG D, 等. Investigation on wind tunnel tests of a full aeroelastic model of electrical transmission tower-line system [J]. Engineering Structures, 2015, 85(63-72.
[7] 李正良, 肖正直, 韩枫, 等. 1000kV汉江大跨越特高压输电塔线体系气动弹性模型的设计与风洞试验 [J]. 电网技术, 2008, 32(12): 1-5.
[7] LI Zhengliang,XIAO Zhengzhi,HAN Feng,et al. Aeroelastic model design and wind tunnel tests of 1000 kV Hanjiang long span transmission line system [J].Power System Technology,2008,32(12):1-5.
[8] 邓洪洲, 朱松晔, 陈晓明, 等. 大跨越输电塔线体系气弹模型风洞试验 [J]. 同济大学学报(自然科学版), 2003, 31(2): 132-7.
[8] Deng Hongzhou,ZHU Songye,CHEN Xiaoming,et al. Wind tunnel investigation on model of long span transmission line system [J].Journal of Tongji University(natural science),2003,31(2):132-137.
[9] 邓洪洲, 朱松晔, 苏速, 等. 大跨越输电塔线体系风振控制风洞试验 [J]. 同济大学学报(自然科学版), 2003, 09): 1009-13.
[9] Deng Hongzhou,ZHU Songye,SU Su,et al. Wind tunnel investigation on wind-induced vibration control of long span transmission line systems [J].Journal of Tongji University,2003,31(9):1019-1013.
[10] 邓洪洲, 朱松晔, 王肇民. 大跨越输电塔线体系动力特性及风振响应 [J]. 建筑结构, 2004, 34(7): 25-28.
[10] Deng Hongzhou,ZHU Songye,WANG Zhaomin.Wind tunnel investigation on dynamic characteristics and wind-induced vibration response of long span transmission line systems [J].Building Structure,2004,34(7):25-28.
[11] 郭勇. 大跨越输电塔线体系的风振响应及振动控制研究 [D]; 浙江大学, 2006.
[12] 郭勇, 孙炳楠, 叶尹. 大跨越输电塔线体系风振响应的时域分析 [J]. 土木工程学报, 2006, 32 (12): 12-7.
[12] GUO Yong, SUN Bingnan, YE Yin. Time-domain analysis on wind-induced dynamic response of long span power transmission line systems [J]. China Civil engineering journal,2006,32 (12): 12–17.
[13] 郭勇, 孙炳楠, 叶尹, 等. 大跨越输电塔线体系风振响应频域分析及风振控制 [J]. 空气动力学学报, 2009, 27(3): 288-95.
[13] GUO Yong, SUN Bingnan, YE Yin, et al. Frequency-domain analysis on wind-induced dynamic response and wind-induced vibration control of long span power transmission line systems [J]. Acta Aerodynamica Sinica,2009,27(3): 288–294.
[14] 郭勇, 孙炳楠, 叶尹, 等. 大跨越输电塔线体系气弹模型风洞试验 [J]. 浙江大学学报(工学版), 2007, 09): 1482-6.
[14] GUO Yong, SUN Bingnan, YE Yin, et al. Wind tunnel test on aeroelastic model of long span transmission line system [J]. Journal of Zhejiang University(Engineering Science),2007,41 (9): 1483–1486.
[15] 傅鹏程. 苏通大跨越输电塔线体系刚性模型风洞试验研究-气动荷载风洞试验 [R]. 上海: 华东电力设计院, 2017: 35-52.
[16] HOLMES J D. Wind loading of structures [M]. England: Taylor & Francis,2007.
[17] 肖正直. 特高压输电塔风致响应及等效风荷载研究 [D].重庆:重庆大学土木工程学院,2009: 1–138.
[18] Simiu Emil, Scanlan Robert H.,刘尚培,项海帆,谢霁明译.风对结构的作用一风工程导论[M].上海:同济大学出版社,1992.
[19] IRVINE M. Cable structures [M]. England: The MIT Press,1981.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}