冲击载荷作用下武器战斗部装药Grüneisen物态方程

蔡宣明1,张伟2,徐鹏1,高玉波1,范志强1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 105-111.

PDF(1514 KB)
PDF(1514 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 105-111.
论文

冲击载荷作用下武器战斗部装药Grüneisen物态方程

  • 蔡宣明1,张伟2,徐鹏1,高玉波1,范志强1
作者信息 +

Grüneisen equation of state of warhead charge under impact loading

  • CAI Xuanming1,ZHANG Wei2,XU Peng1,GAO Yubo1,FAN Zhiqiang1
Author information +
文章历史 +

摘要

针对武器战斗部装药(PBX炸药)在高过载作用下出现提前起爆现象,进而对其在平面正冲击波作用下的物态方程形式进行了研究。基于平面正冲击波关系式及雨贡纽曲线,应用冲击波速度与粒子速度的相互关系,采用 “对称碰撞”实验方式进而对不同密度PBX炸药在不同冲击波阵面后的物态方程进行了研究。获得了不同密度PBX炸药的冲击因子及声速;给出了Grüneisen物态方程的相关参量,为预测PBX炸药在更大冲击波阵面后的内部压强、密度、能量状态提供了重要的依据;揭示了Grüneisen系数  与体应变  呈高度线性关系。

Abstract

Aiming at the application problem of PBX explosive in weapon warhead, the effects of plane positive shock wave to the state equation of PBX explosive were studied.Based on the planar shock wave equation and the Hugoniot curve, using symmetric collision experiments, the state equation of different densities of PBX explosive under different shock wave loading were studied through the relationship of the application of shock wave velocity and particle velocity.In the research results, the impact factors and sound velocity of different densities PBX explosive were obtained.The relevant parameters of the Gruneisen state equation were obtained, which provided an important basis for predicting the internal pressure, density and energy state of the PBX explosive in the face of the larger shock wave array.And the result reveals that the relationship between Gruneisen coefficient Γ and body strain ξ is highly linear.

关键词

冲击载荷 / 武器战斗部装药 / 粒子速度 / 冲击波

Key words

  / impact loading;Weapon warhead charge;particle velocity;shock wave

引用本文

导出引用
蔡宣明1,张伟2,徐鹏1,高玉波1,范志强1. 冲击载荷作用下武器战斗部装药Grüneisen物态方程[J]. 振动与冲击, 2019, 38(12): 105-111
CAI Xuanming1,ZHANG Wei2,XU Peng1,GAO Yubo1,FAN Zhiqiang1. Grüneisen equation of state of warhead charge under impact loading[J]. Journal of Vibration and Shock, 2019, 38(12): 105-111

参考文献

[1] HUSSEIN A K, ELBEIH A, ZEMAN S. Thermal decomposition kinetics and explosive properties of a mixture based on cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-d]imidazole and 3-nitro-1,2, 4-triazol-5-one (BCHMX/NTO)[J]. Thermochimica Acta, 2017, 655(9): 292-301.
[2] HANG Guiyun, YU Wenli, WANG Tao, et al. Comparative studies on structures, mechanical properties, sensitivity, stabilities and detonation performance of CL-20/TNT cocrystal and composite explosives by molecular dynamics simulation[J]. Journal of Molecular Modeling, 2017, 23(10): 281-290.
[3] GUO Maolin, MA Zhongliang, HE Liming, et al. Effect of varied proportion of GAP-ETPE/NC as binder on thermal decomposition behaviors, stability and mechanical pr-operties of nitramine propellants[J]. Journal of Thermal Analysis and Calorimetry, 2017, 130(2): 909-918.
[4] BAKER W A, UNTAROIU C D, CRAWFORD D M, et al. Mechanical characterization and finite element implementation of the soft materials used in a novel anthropometric test device for simulating underbody blast loading[J]. Journal of The Mechanical Behavior of Biomedical Materials, 2017, 74(10): 358-364.
[5] HARE D E, VANDERSALL K S, GARCIA F, et al. Isentropic compression data on lx-04 explosive at 150°C using the Z-accelerator[J]. Shock Compression of Condensed Matter, 2005, 1315-1318.
[6] HOOKS D E, HAYES D B, HARE D E, et al. Isentropic compression of cyclotetramethylene tetranitramine (Hmx) single crystals to 50 Gpa[J]. Journal of Applied Physics, 2006, 99(12): 1249-1256.
[7] 蔡进涛,赵锋,王桂吉,等.施惠基. 5GPa内JO-9159 炸药的磁驱动准等熵压缩响应特性[J]. 含能材料,2011,19(5): 536-539.
CAI Jintao,ZHAO Feng,WANG Guiji,et al. Response of JO - 9159 under magnetically driven quasi -isentropic compression to 5 GPa [J]. Chinese Journal of Energetic Material, 2011,19(5): 536-539.
[8] 周正青,聂建新,郭学永,等. 一种以RDX为基含铝炸药物态方程的研究[J]. 兵工学报,2014, 35(2): 338-341.
ZHOU Zhengqing, NIE Jianxin, GUO Xueyong, et al. Studies on Equation of State of Detonation Product for RDX-based Aluminized Explosive[J]. ACTA ARMAMENTARII, 2014, 35(2): 338-341.
[9] 常敬臻. 冲击加载下氧化铝陶瓷动态力学响应分析[D]. 重庆:重庆大学, 2006.
CHANG Jingzhen. Analysis of dynamic behavior for alumina ceramics under shock-loaded[D]. Chongqing: Chongqing University, 2006.
[10] 李建鹏. 平面冲击压缩下氧化铝陶瓷的动态力学行为[D]. 重庆:重庆大学, 2008.
LI Jianpeng. Dynamic behaviors for alumina ceramics under planar shock compression[D]. Chongqing: Chongqing University, 2008.
[11] 谢增康. Fe-S体系的物态方程研究[D]. 武汉:武汉理工大学, 2012.
XIE Zenkang. The hugoniot line surveys of Fe-O-S system[D]. Wuhan: Wuhan University of Technology, 2012.
[12] 胡金彪, 经福谦. 用冲击压缩数据计算物质结合能的一个简便解析方法[J]. 高压物理学报, 1992, 4(3): 175-181.
HU Jinbiao,JING Fuqian. A simplified analytical method for calculations of equation-of state of materials from shock compression data[J]. Journal of high pressure physics, 1992, 4(3): 175-181.
[13] MCQUEEN R G, MARSH S P, TAYLOR J W, et.al. The equation of state of solids from shock wave studies[M]. New York and London: Academic Press: 1970: 294-415.
[14] 滕林. 全量程超高压力薄膜传感器研究[D]. 成都:电子科技大学, 2005.
TEN Lin. Studies on thin film sensors for the whole ultra high pressure range[D].Chengdu: University of Electronic Science and Technology of China, 2005.
[15] 唐录成. 平面冲击加载下A95陶瓷动态力学性能研究[D]. 重庆:重庆大学, 2009.
TANG Lucheng. Study on dynamic behavior of A95 Alumina ceramics under plane shock loading[D]. Chongqing: Chongqing University, 2009.

PDF(1514 KB)

Accesses

Citation

Detail

段落导航
相关文章

/