新型冲击响应谱发生器试验参数智能协同优化设计

刘承骛,温晶晶,吴斌,陈杰

振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 153-161.

PDF(2033 KB)
PDF(2033 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 153-161.
论文

新型冲击响应谱发生器试验参数智能协同优化设计

  • 刘承骛,温晶晶,吴斌,陈杰
作者信息 +

Design and intelligent collaboration optimization for testing parameters of a new shock response spectrum generator

  • LIU Chengwu,WEN Jingjing,WU Bin,CHEN Jie,XU Feng
Author information +
文章历史 +

摘要

为扩充垂直冲击试验机的功能,本文设计了一种新型冲击响应谱发生器。结合Mindlin板理论与有限元仿真,分析了简支矩形厚板固有特性、激励载荷同冲击谱的关系。提出正交试验、支持向量机与多种群遗传算法结合的智能协同优化方案。利用Nastran软件建立仿真冲击谱的正交试验数据库,通过支持向量机建立仿真冲击谱与目标冲击谱的均方根误差预测模型,采用多种群遗传算法优化谐振板尺寸(板长 ,板宽 ,板厚 )与激励载荷(峰值 ,脉宽 ),最终进行仿真与试验验证。优化后的谐振板尺寸为 , , ,激励载荷为 , ,预测均方根误差为27.7。优化结果表明仿真冲击谱与试验冲击谱均满足冲击试验规范条件,仿真均方根误差为39.6,试验均方根误差为33.4。该研究为冲击试验提供了一种新思路。

Abstract

In order to expand the function of a vertical impact testing machine, a new type of shock response spectrum (SRS) generator was designed in this paper.Combined with the Mindlin plate theory and the finite element simulation, the relationship among the inherent characteristics of a simply supported plate, the excitation load, and SRS was analyzed.An intelligent collaboration optimization scheme was proposed, which contains the orthogonal test, support vector machine (SVM), and the multi-population genetic algorithm (MPGA).First, we established a database of simulated SRSs by emulating orthogonal tests with Nastran software.Then, we used SVM to establish the surrogate model for predicting the root mean square error (RMSE) of simulated SRSs and the standard ones.Lastly, the optimal parameters of the resonant plate size (length a, width b, thickness h) and excitation load (peak A, width D) were obtained from the surrogate model by MPGA.The optimized results are that the size of the resonant plate is a=398 m, b=387 mm, h=32 mm and the excitation load is A=4.628 kN, D0=0.8 ms, and the RMSE is 27.7.Meanwhile these optimized results were verified and validated with simulation and experiments.The results show that both the simulated SRS and the experimental SRS meet the requirement of test standard.The simulated RMSE is 39.6 and the experimental RMSE is 33.4.This study provides a new way for impact test.

关键词

冲击响应谱发生器 / Mindlin板理论 / 正交试验 / 支持向量机 / 多种群遗传算法

Key words

shock response spectrum generator / Mindlin plate theory / orthogonal test / support vector machine / multi-population genetic algorithm

引用本文

导出引用
刘承骛,温晶晶,吴斌,陈杰. 新型冲击响应谱发生器试验参数智能协同优化设计[J]. 振动与冲击, 2019, 38(12): 153-161
LIU Chengwu,WEN Jingjing,WU Bin,CHEN Jie,XU Feng. Design and intelligent collaboration optimization for testing parameters of a new shock response spectrum generator[J]. Journal of Vibration and Shock, 2019, 38(12): 153-161

参考文献

[1] Garner J M. Shock Test Machine User's Guide[R]. ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD,1993.
[2] 骞永博. 冲击响应谱试验技术研究[D]. 西安:西北工业大学航天学院,2007.
QIAN Yong-bo. Shock response spectrum testing technical research[D]. Xi’an: Northwestern Polytechnical University College of Astronautics, 2007.
[3] 丁继锋,赵欣,韩增尧. 航天器火工冲击技术研究进展[J]. 宇航学报,2014,35(12):1339-1349.
DING Ji-feng, ZHAO Xin, HAN Zeng-yao. Research Development of Spacecraft Pyroshock Technique[J]. Journal of Astronautics, 2014, 35(12): 1339-1349.
[4] 张华,吴斌. 航天器爆炸冲击环境模拟装置仿真研究[J]. 计算机仿真,2008,25(2):61-64.
ZHANG Hua, WU Bin. Simulation of The Testing Equipment Used for Simulating Pyroshoch Environment of missiles and Lunch Vehicles[J]. Computer Simulation, 2008, 25(12): 61-64.
[5] 赵欣,韩增尧,邹元杰, 等. 一种航天器火工冲击源建模和分析方法[J]. 宇航学报,2015,36(10):1210-1218.
ZHAO Xin, HAN Zeng-yao, ZOU Yuan-jie, et al. A Feasible Method for Modeling and Analyzing the Pyroshock Source of Spacecraft[J]. Journal of Astronautics, 2015, 36(10): 1210-1218.
[6] 刘洪英,冯雪梅,马爱军. 冲击响应谱控制系统的开发[J]. 振动与冲击,2006,25(6):132-134.
LIU Hong-ying, FENG Xue-mei, MA Ai-jun. Development of a Shock Response Spectrum Control System[J]. Journal of vibration and shock, 2006, 25(6): 132-134.
[7] 马道远,庄方方,徐振亮. 基于遗传算法的冲击响应谱时域合成方法[J]. 强度与环境,2015(5):49-53.
MA Dao-yuan, ZHANG Fang-fang, XU Zhen-liang. Time-domain synthesis method for shock response spectrum based on genetic algorithm[J]. Structure and Environment Engineering, 2015(5): 49-53.
[8] 穆瑞忠,张建华,皮本楼. 航天器的冲击谱模拟方法[J]. 强度与环境,2008,35(5):32-37.
MU Rui-zhong, ZHANG Jian-hua, PI Ben-lou. Methods of SRS simulation testing for space hardware[J]. Structure and Environment Engineering, 2008, 35(5): 32-37.
[9] Morais.O.M.F,Vasques.C.M.A. Shock environment design for space equipment testing[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2017,231(6):1154-1167.
[10] Parzianello G,Francesconi A,Pavarin D. An estimation method for the Shock Response Spectrum propagating into plates subjected to hypervelocity impact[J]. Measurement,2010,43(1):92-102.
[11] Leissa A W. Vibration of plates[R]. OHIO STATE UNIV COLUMBUS,1969.
[12] 倪振华. 振动力学[M]. 西安:西安交通大学出版社,1989.
NI Zhen-hua. Mechanics of Vibration[M]. Xi’an: Xi’an JIAOTONG University Press, 1989.
[13] Lee O S,Kim K J. Dynamic compressive deformation behavior of rubber materials[J]. Journal of Materials Science Letters,2003,22(16):1157-1160.
[14] 李欣业,张明路. 机械振动[M]. 4版. 北京:清华大学出版社,2009.
LI Xin-ye, ZHANG Ming-lu. Mechnical Vibration[M]. 4th edition, Beijing: Tsinghua University Press, 2009.
[15] GJB-1027A-2005. 运载器,上面级和航天器试验要求 [S].
[16] 杨玉良,秦俊奇,狄长春,等. 火炮动力后坐试验台波形发生器优化设计研究[J]. 振动与冲击,2014,33(2):47-51.
YANG Yu-liang, QIN Jun-qi, DI Chang-chun, et al. Optimization design on waveform generator of gun-power-recoil test machine[J]. Journal of vibration and shock, 2014, 32(2): 47-51.
[17] 顾燕萍,赵文杰,吴占松. 最小二乘支持向量机的算法研究[J]. 清华大学学报:自然科学版,2010(7):1063-1066.
GU Yan-ping, ZHAO Wen-jie, WU Zhan-song. Least squares support vector machine algorithm[J]. Journal of Tsinghua University: Science and Technique, 2010(7): 1063-1066.
[18] 林阳,赵欢,丁汉. 基于多种群遗传算法的一般机器人逆运动学求解[J]. 机械工程学报,2017,53(3):1-8.
LIN Yang, ZHAO Huan, DING Han. Solution of Inverse Kinematics for General Robot Manipulators Based on Multiple Population Genetic Algorithm[J]. Journal of mechanical engineering, 2017, 53(3): 1-8.

PDF(2033 KB)

Accesses

Citation

Detail

段落导航
相关文章

/