径向排气式缓冲罐对往复压缩机管系振动的抑制研究

马屈杨,杨国安,李孟君

振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 17-24.

PDF(2301 KB)
PDF(2301 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 17-24.
论文

径向排气式缓冲罐对往复压缩机管系振动的抑制研究

  • 马屈杨,杨国安,李孟君
作者信息 +

Vibration control in a reciprocating compressor piping system using a radial-exhaust surge tank

  • MA Quyang,YANG Guoan,LI Mengjun
Author information +
文章历史 +

摘要

压力脉动是导致往复压缩机及其管系振动的主要原因。为进一步提高缓冲罐对管系压力脉动的抑制效果,对径向排气式缓冲罐的抑制特性展开理论研究。构造了径向排气缓冲罐的压力脉动传递数学模型,预测压力脉动沿全管系分布趋势。研究结果表明,相比于轴向排气结构,径向排气使缓冲罐具有更好的脉动抑制效果,其所在全管系压力脉动抑制率最大可提高10%。结合实验研究和三维瞬态模拟证明了理论模型的合理性。结合压力脉动传递数学模型优化排气管偏置距离和罐体长径比等结构参数,计算结果表明,在缩短偏置距离的同时减小长径比,可使管系压力脉动峰峰值最大值进一步衰减约8%,从而为现场抑制管系振动提供理论指导。

Abstract

Vibration of a reciprocating compressor piping system is caused mainly by the pressure pulsation.To further improve the performance of suppressing pressure pulsations in the whole piping system by using a surge tank, the characteristics of pulsation suppression using the radial-exhaust surge tank was studied.The transfer matrix was developed, and the distribution of pressure pulsation was predicted.The results showed that the relative suppression ratio in the piping system with a radial-exhaust surge tank is increased by 10% compared with an axial-exhaust surge tank.The validity of the theoretical model was verified by experiments and three-dimensional transient simulations.The optimization of the geometrical parameters, such as the distance between the inlet and outlet pipes and the ratio of length to diameter, was performed.The maximum peak-to-peak pressure pulsation in the piping system is decreased by 8% when the distance was shortened and the ratio was decreased.This work may provide guidance for vibration control in the industry.

关键词

往复压缩机 / 压力脉动 / 传递矩阵 / 径向排气式缓冲罐

Key words

 reciprocating compressor / pressure pulsation / transfer matrix / radial-exhaust surge tank

引用本文

导出引用
马屈杨,杨国安,李孟君. 径向排气式缓冲罐对往复压缩机管系振动的抑制研究[J]. 振动与冲击, 2019, 38(12): 17-24
MA Quyang,YANG Guoan,LI Mengjun. Vibration control in a reciprocating compressor piping system using a radial-exhaust surge tank[J]. Journal of Vibration and Shock, 2019, 38(12): 17-24

参考文献

[1] 陈正寿,张国辉,赵宗文,等. 潮流能水轮机叶轮压力脉动特性分析[J]. 振动与冲击. 2017, 36(19): 98-105.
CHEN Shou-zheng, ZHANG Guo-hui, ZHAO Zong-wen, et al. Characteristic analysis of the pressure fluctuation around tidal current turbine blades [J]. Journal of vibration and shock, 2017, 36(19): 98-105.
[2] 王松林,谭磊,王玉川. 离心泵瞬态空化流动及压力脉动特性[J]. 振动与冲击. 2013, 32(22): 168-173.
WANG Song-lin, TAN Lei, WANG Yu-chuan. Characteristics of transient cavitation flow and pressure fluctuation for centrifugal pump [J]. Journal of vibration and shock, 2013, 32(22): 168-173.
[3] Almasi A. Pulsation control in process reciprocating compressors [J]. Proceedings of the Institution of Mechanical Engineers Part E Journal of Process Mechanical Engineering, 2009, 224(2): 155-158.
[4] 税朗泉,刘永寿,顾致平,等. 轴向周期激励下含脉动流体简支管道横向振动稳定性分析[J]. 振动与冲击. 2013, 32(22): 168-172.
SHUI Lang-quan, LIN Yong-shou, GU Zhi-ping, et al. Stability of transverse vibration for a pinned pipe conveying pulsing fluid under axial periodic excitation [J]. Journal of vibration and shock, 2012, 32(22): 168-172.
[5] 刁安娜,王宇,冯健美. 天然气压缩机管路系统气流脉动及管道振动分析[J]. 流体机械. 2008, 36(5): 39-42.
DIAO An-na, WANG Yu, FENG Jian-mei. Anaysis on gas pulsation and pipig vibration in the piping system of natural gas compressor [J]. Fluid machinery, 2008, 36(5): 39-42.
[6] API 618. Reciprocating Compressors for Petroleum, Chemical, and Gas Industry Services [S]. Washington, DC, 2007.
[7] 孙嗣莹,夏永源,李锦临. 缓冲器位置对管道内气流脉动的影响[J]. 压缩机技术. 1980(2): 31-34.
SUN Si-ying, XIA Yong-yuan, LI Jin-lin. The effect of surge tank position on the pressure pulsation in the pipe [J]. Compressor Technology, 1980(2): 31-34.
[8] 陈殿云. 简单管道的最佳管长与缓冲器的最佳位置[J]. 压缩机技术. 1982(2): 36-40.
CHEN Dian-yun. The optimal length of simple pipe and the best position of the surge tank [J]. Compressor Technology, 1982(2): 36-40.
[9] 党锡淇,陈守五. 活塞式压缩机气流脉动与管道振动[M]. 西安: 西安交通大学出版社, 1984.
DANG Xi-qi, CHEN Shou-wu. Gas Pulsation and Vibration in Reciprocating Compressor Piping System [M]. Xi’an: Xi'an Jiaotong University Press, 1984.
[10] Tan L, Zhu B S, Cao S L, et al. Numerical simulation of unsteady cavitation flow in a centrifugal pump at off-design conditions [J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 2014, 228(11): 1994-2006.
[11] Tan L, Zhu B, Wang Y, et al. Numerical study on characteristics of unsteady flow in a centrifugal pump volute at partial load condition [J]. Engineering Computations: Int J for Computer-Aided Engineering, 2015, 32(6): 1549-1566.
[12] Luo Y, Wang Z, Liu X, et al. Numerical prediction of pressure pulsation for a low head bidirectional tidal bulb turbine [J]. Energy, 2015, 89: 730-738.
[13] Xu B, Feng Q, Yu X. Prediction of Pressure Pulsation for the Reciprocating Compressor System Using Finite Disturbance Theory[J]. Journal of Vibration and Acoustics-Transactions of the ASME, 2009, 131(3): 987-1002.
[14] 季振林. 消声器声学理论与设计[M]. 北京: 科学出版社, 2015.
JI Zhen-lin. Acoustic theory and design of muffler [M]. Beijing: The Science Publishing Company, 2015.
[15] Kant S, Munjal M, Rao DLP. Waves in branched hydraulic pipes [J]. Journal of Sound and Vibration, 1974, 37(4): 507-519.
[16] Pierce AD, Smith PW. Acoustics: An Introduction to Its Physical Principles and Applications [M]. McGraw-Hill Book Co, 1981.
[17] Chen YN. Calculation of gas vibrations due to simultaneous excitations in reciprocating compressor piping systems with allowance for frictional effect and temperature change in the flow [J]. Journal of Sound and Vibration, 1967, 5(2): 215-256.
[18] Ingard U, Singhal VK. Sound attenuation in turbulent pipe flow [J]. Journal of the Acoustical Society of America, 1974, 55(55): 535.
[19] Mo M, Botros K K, Hardeveld T V. Pulsation and Vibration Analysis of Compression and Pumping Systems. Pipeline Pumping and Compression systems—a Practical approach [J]. Photochemistry & Photobiology, 1966, 5(10):777-786.
[20] 王中振,郭文涛,刘博想,等. 考虑阀腔影响的气流脉动模拟改进[J]. 流体机械. 2010, 38(7): 14-19.
WANG Zhong-zhen, GUO Wen-tao, LIU Bo-xiang, et al. Improved modeling of gas pulsation by assuming the valve chamber as pipe-tube-pipe element [J]. Fluid mechinary, 2010, 38(7): 14-19.
[21] Jia X, Liu B, Feng J, et al. Influence of an Orifice Plate on Gas Pulsation in a Reciprocating Compressor Piping System [J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part E Journal of Process Mechanical Engineering, 2015, 229(1): 64-77.
[22] Liu Z, Cheng J, Feng Q, et al. Effect of a cross-flow perforated tube on pressure pulsation and pressure loss in a reciprocating compressor piping system [J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 2017, 231(3): 473-484.
[23] Liang Z, Li S, Tian J, et al. Vibration cause analysis and elimination of reciprocating compressor inlet pipelines [J]. Engineering Failure Analysis, 2015, 48: 272-282.
[24] Hayashi I, Kaneko S. Pressure pulsations in piping system excited by a centrifugal turbomachinery taking the damping characteristics into consideration [J]. Journal of Fluids and Structures, 2014, 45(1): 216-234.
[25] Binder RC. The Damping of Large Amplitude Vibrations of a Fluid in a Pipe [J]. Journal of the Acoustical Society of America, 1943, 15(1): 41-43.
[26] Park JI, Bilal N, Adams DE. Gas Pulsation Reductions in a Multicylinder Compressor Suction Manifold Using Valve-to-Valve Mass Flow Rate Phase Shifts [J]. Journal of Vibration and Acoustics, 2007, 129(4): 183-194.
[27] HG/T-20570.7-1995. 管道压力降计算[S]. 北京: 化工部工程建设标准编辑中心, 1996
HG/T-20570.7-1995. Calculation of pressure drop for pipeline[S]. Beijing: Engineering construction standard editing center of the Ministry of Chemical Engineering, 1996

PDF(2301 KB)

Accesses

Citation

Detail

段落导航
相关文章

/