海上风力机叶片变桨将会影响支撑平台的动态响应特性即海上风力机的漂浮稳定性,而海上风力机的漂浮稳定性是影响其有效利用深海区域风能的重要因素。因此,在开源软件FAST与Matlab/Simulink联合仿真平台上,建立干扰自适应控制(DAC),并与FAST原有控制策略对比分析,研究不同控制策略对海上风力机漂浮稳定性的影响。结果表明:较之FAST控制策略,在DAC作用下海上风力机风轮转速及输出功率波动更小,但海上风力机平台动态响应较大;不同控制策略对于海上风力机漂浮稳定性的影响主要集中在纵摇及纵荡;在海上风力机的变桨控制策略设计时应该首先避免纵摇方向的固有频率以提高海上风力机漂浮稳定性。研究结果以期为设计更适合海上风力机的变桨控制器提供理论基础与现实途径。
Abstract
The pitch operation of offshore wind turbine blades affects the dynamic response of the supporting platform, namely the floating stability of the offshore wind turbine.However, the floating stability of the offshore wind turbine is an important factor in its ability to exploit wind energy in the deep sea.Therefore, disturbance accommodating control (DAC) was established in the open source software FAST and the Matlab / Simulink co-simulation platform, and compared with the original control strategy of FAST to study the influence of different controllers on the floating characteristics of offshore wind turbines.The result show that: Compared with the FAST control strategy, DAC has better control effect on offshore wind turbines, which aggravate the dynamic response of offshore wind turbines.The influence of different control strategies on the floating characteristics of offshore wind turbines mainly lies in the direction of surge and pitch.In the design of pitch control strategy of offshore wind turbine, the natural frequency in pitch direction should be avoided firstly to improve the floating stability of offshore wind turbine.The results provide a theoretical basis for designing a pitch controller that is more suitable for offshore wind turbines.
关键词
海上风力机 /
Spar平台 /
漂浮稳定性 /
动态响应 /
干扰自适应控制
{{custom_keyword}} /
Key words
offshore wind turbine /
Spar platform /
floating stability /
dynamic response /
disturbance accommodating control
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Manfred Stiebler. Wind Energy Systems for Electric Power Generation [M]. Berlin: Springer, 2008.
[2] 罗清顺.大型变速变桨风力发电机组的先进控制技术研究 [D].杭州:浙江大学,2016.
LUO Qing-shun. Advanced Control System Design for Large Scale Variable-Speed Variable-Pitch Wind Turbine [D]. Hangzhou: Zhejiang University, 2016.
[3] 金鑫,王亚明,李浪,等.基于LQG的独立变桨控制技术对风电机组气动载荷影响研究 [J].中国电机工程学报,2016,36(22):6164-6170.
JIN Xin, WANG Ya-ming, LI Lang, et al. Dynamics Loads Optimization Analysis of Wind Turbine Based on LQG Independent Pitch Control [J]. Proceedings of the CSEE, 2016, 36(22): 6164-6170.
[4] 熊海洋.基于FAST软件的大型风力发电机组系统建模与控制研究 [D].重庆:重庆大学,2014.
XIONG Hai-yang. Research on Modeling and Control of Large-scale Wind Turbines System Which is Based on Fast Software [D]. Chongqing: Chongqing University, 2014.
[5] Alan D. Wright. Modern control design for flexible wind turbines [R]. Colorado: U.S National Renewable Energy Laboratory, 2004.
[6] A.D. Wright, L.J. Fingersh. Advanced Control Design for Wind Turbines [R]. Colorado: U.S National Renewable Energy Laboratory, 2008.
[7] Morten H. Hansen, Anca Hansen, Torben J. Larsen, et al. Control design for a pitch-regulated, variable speed wind turbine [R]. Roskilde: Denmark Risø National Laboratory, 2005.
[8] 丁勤卫,李春,叶柯华,等.风波流对多平台阵列浮式风机Spar平台运动特性的影响 [J].农业工程学报, 2016,32(21):223-229.
DING Qin-wei, LI Chun, YE Ke-hua, et al. Effect of Wind, Wave and Current on Movement Characteristics of Array of Floating Wind Turbine Spar Platform [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 223-229.
[9] Ding Q W, Chun L I. Research on the Influence of Helical Strakes on Dynamic Response of Floating Wind Turbine Platform[J]. China Ocean Engineering, 2017, 31(2):131-140.
[10] Ding Q W, Li C, Li B X, et al. Research on the Influence of Helical Strakes and Its Parameters on Dynamic Response of Platform of Floating Wind Turbine Based on Optimization Method of Orthogonal Design[J]. Journal of Solar Energy Engineering, 2017, 139(5): 1-15.
[11] Biester D. Hywind: Siemens and statoihydro install first floating wind turbine [EB/OL]. (2009-07-03)[2017-11-05] http://www.siemens.com/press/pool/de/pressemitteilungen/2009/renewable_energy/ERE200906064e.pdf.
[12] Namik H, Stol K. Performance analysis of individual blade pitch control of offshore wind turbines on two floating platforms [J]. Mechatronics, 2011, 21(4):691-703.
[13] Namik H, Stol K. Individual Blade Pitch Control of a Spar-Buoy Floating Wind Turbine [J]. IEEE Transactions on Control Systems Technology, 2013, 22(1):214-223.
[14] Bagherieh O, Nagamune R. Utilization of blade pitch control in low wind speed for floating offshore wind turbines [C] // American Control Conference. IEEE, 2014:4354-4359.
[15] 王东华,叶舟,张楠,等.海上漂浮式风力机Spar平台系泊型式及动态响应研究 [J].热能动力工程,2017,32(2): 106-112.
WANG Dong-hua, YE zhou, ZHANG Nan, et al. Research on Dynamic Response of Floating Wind Turbine Spar Platform and Mooring Type [J]. Journal of Engineering for Thermal Energy & Power, 2017, 32(2): 106-112.
[16] Robertson A N, Jonkman J M. Loads analysis of several offshore floating wind turbine concepts [C] // International Society of Offshore and Polar Engineers 2011 Conference, Hawaii, USA, 2011.
[17] Jonkman J, Butterfield S, Musial W, et al. Definition of a 5MW reference wind turbine for offshore system development [R]. Colorado, USA: National Renewable Energy Laboratory (NREL), 2009.
[18] 丁勤卫,郝文星,李春,等.基于正交设计的浮式风机Spar平台动态响应优化 [J].中南大学学报(自然科学版),2017,8(34):2231-2237.
DING Qin-wei, HAO Wen-xing, LI Chun, et al. Dynamic Response of Platform of Floating Wind Turbine Based on Optimization Method of Orthogonal Design [J]. Journal of Central South University(Science and Technology), 2017, 8(34): 2231-2237.
[19] Jason M.Jonkman, Marshall L. Buhl Jr. FAST User’s Guide [R]. Colorado, USA: National Renewable Energy Laboratory (NREL), 2005.
[20] 吴攀.风况特性及地震载荷对风力机性能与结构影响研究[D].上海:上海理工大学,2014.
WU Pan. Research on Wind Condition and Seismic Loads of Performance and Structure of Wind Turbine [D]. Shanghai: University of Shanghai for Science and Technology, 2014.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}