基于超高周三点弯曲的复合材料试验方法

陈超1,陈煊1,程礼1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 239-245.

PDF(1515 KB)
PDF(1515 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 239-245.
论文

基于超高周三点弯曲的复合材料试验方法

  • 陈超1,陈煊1,程礼1,2
作者信息 +

A VHCF test method based on three-point bending for composite

  • CHEN Chao1 , CHEN Xuan1 , CHENG Li1,2
Author information +
文章历史 +

摘要

针对复合材料的超高周疲劳问题,本文提出了一种基于超声疲劳实验装置对复合材料进行三点弯曲试验的方法;阐述了进行复合材料超高周疲劳试验的必要性;利用ABAQUS软件分析了变幅杆、连接杆及试件的模态,得出设计的该装置及试件的谐振频率满足试验需求;针对试验过程中的温升现象,提出了液氮与压缩空气复合式冷却系统。结果表明,该方法大大缩短了试验周期,提高了试验效率,消除了试样在高频加载过程中的热效应,保证了实验结果的有效性。

Abstract

In order to solve the problem of composite`s very high cycle fatigue (VHCF), a method of three-point bending test based on ultrasonic fatigue testing device was proposed; the necessity of composite VHCF test was discussed; the modal of the horn, the connecting rod and the specimen was analyzed by ABAQUS, and the resonant frequency of the designed device as well as the specimen was satisfied.Aiming at the phenomenon of temperature rise in the experiment process, a combined cooling system of liquid nitrogen with compressed air was put forward.The results indicate that the method greatly shortens the test period, improves the test efficiency, eliminates the thermal effect of the specimen during the high frequency loading period, and ensures the validity of the experimental results.

关键词

复合材料 / 三点弯曲 / 超高周 / 温升现象 / 冷却系统

Key words

composite / three-point bending / VHCF / temperature rise phenomenon / cooling system

引用本文

导出引用
陈超1,陈煊1,程礼1,2. 基于超高周三点弯曲的复合材料试验方法[J]. 振动与冲击, 2019, 38(12): 239-245
CHEN Chao1,CHEN Xuan1,CHENG Li1,2 . A VHCF test method based on three-point bending for composite[J]. Journal of Vibration and Shock, 2019, 38(12): 239-245

参考文献

[1] 苏云洪,刘秀娟,杨永志. 复合材料在航空航天中的应用[J],工程与实验,第4期,36-38,2008.
Su Yunhong,Liu Xiujuan,Yang Yongzhi. Application of Composites in Aviation and Aerospace[J]. Engineering & Test,2008,4:36-38.
[2] 傅恒志. 未来航空发动机材料面临的挑战与发展趋势[J]. 航空材料学报,1998, 18(4):52-61.
FU H Z,Challenges and future trends of aviation en-gine material in the future[J],Aeronautical Materials,1998,18,4:52-61.
[3]  Bathias C, Paris PC. Gigacycle fatigue in mechanical practice[M], Taylor & Francis:  2005. 
[4]  娇桂琼, 贾普荣. 复合材料力学[M], 西安:西北工业大学出版社, 2008,3.
JIAO G Q,JIA P R. Mechanics of Composites[M]. Xi`an: Northwestern  Polytechnical University press,2008,3.
[5]  Silvain A. Michel, Rolf Kieselbach, Hans Jörg Martens. Fatigue strength of carbon fibre composites up to the gigacycle regime (gigacycle-composites). International Journal of Fatigue,28 (2006) 261–270.
[6] M. Gude, W. Hufenbach, I. Koch, et al. Fatigue Testing of Carbon Fibre Reinforced Polymers under VHCF Loading[J]. Procedia Materials Science,2013, 2: 18-24.
[7]  T. J. Adam, P. Horst. Experimental investigation of the very high cycle fatigue of GFRP [90/0]s cross-ply specimens subjected to high-frequency four-point bend-ing[J]. Composites Science and Technology, 2014, 101: 62-70.
[8]  程礼,焦胜博,李全通等. 超高周疲劳与断裂[M], 北京:国防工业出版社,2017,3.
CHEN Li, JIAO Shengbo, LI Quantong, et al. Very High Cycle Fatigue and Fracture[M], Beijing: National Defense Industry Press,2017,3.
[9] Daniel Backe, Frank Balle, Dietmar Eifler. Fatigue testing of CFRP in the Very High Cycle Fatigue (VHCF) regime at ultrasonic frequencies[J]. Composites Science and Technology, 2015, 106: 93-99.
[10]  张耀庭,邹冰川.基于各项异性材料的全预应力梁自振频率的研究[J],铁道工程学报,2006,98(8):34-42
ZHANG Yaoting, ZOU Bingchuan. Research on vibra-tion frequency of full-prestressed concrete beam based on anisotropic complex material[J]. Railway Engineering Society, 2006,98(8):34-42.
[11] H Q. Xue, H Tao, F Montembault, Q.Y Wang, C Bathias, Development of a three-point bending fatigue testing methodology at 20 kHz frequency. International Journal of Fatigue 2007, 29; 2085–2093.
[12] 薛红前. 超声弯曲疲劳试验装置[P]. CN 101819114 B. 2012, 07.
H Q. Xue, Ultrasonic Bending Fatigue Test Device[P]. CN 101819114 B. 2012, 07.
[13] Ahmed M. El-Assal, U. A. Khashaba. Fatigue analysis of unidirectional GFRP composites under combined bending and torsional loads[J]. Composite Structures, 2007, 79: 599-605.
[14] 鲁连涛, 张继旺, 张艳斌. LZ50车轴钢超长寿命旋转弯曲疲劳性能[J]. 铁道学报, 2009, 31(5): 37-41.
LU Lian-tao,ZHANG Ji-wang,ZHANG Yan-bin,ZHI Bai-yu,ZHANG Wei-hua. Rotary Bending Fatigue Property of LZ50 Axle Steel in Gigacycle Regime[J]. the China Railway Society 2009, 31(5): 37-41.
[15] 李伟, 李强, 鲁连涛. GCr15钢超高周的疲劳行为[J]. 北京交通大学学报, 2008, 32(4): 24-27.
LI Wei,LI Qiang,LU Liantao,XIE Jilong. Fatigue Behavior of GCr15 Steel in Ultra-High Life Region[J]. Beijing Jiaotong University 2008, 32(4): 24-27.
[16] 王清远, 宁交贤, 袁祥明等. 超长寿命热- 超声疲劳行为[J]. 实验力学, 2002,17(4):3-4.
WANG Qingyuan, NING Jiaoxian, YUAN Xiangming, et al. Thermo-ultrasonic Fatigue Behavior for Nodular Cast Iron in Super-long Life Range[J]. Experimental Mechanics,2002,17(4):3-4.
[17] 谢少雄, 刘久楷, 侯方等. 不同温度环境下CrMoW 转子钢超高周疲劳行为研究[J].中国测试, 2015, 41(10):3-4.
XIE Shaoxiong, LI Jiukai, HOU Fang, et al. Very high cycle fatigue behavior of CrMoW rotor steel at different temperature[J]. China Measurement & Test,2015, 41(10):3-4.
[18] Holmes JW, Shuler SF. Temperature rise during fatigue of fibre-reinforced ceramics. J Mater Sci Let 1990;9:1290–1.
[19] James M. Staehler, Shankar Mallb, Larry P. Zawada, Frequency dependence of high-cycle fatigue behavior of CVI C/SiC at room temperature[J], Composites Science and Technology 63 (2003) 2121–2131.
[20] Daggumat S. De Baerel, Van Paepegem W. Degreck J. Xu J, Lomov SV.et al. Fatigue and post-fatigue stress-strain analysis of a 5-harness satin weave carbon fibre reinforced composite. Compos Sci Technol 2013; 74;20-7.
[21] Adam TJ. Horst P. Investigation of the very high cycle fatigue behavior of CFRP cross-ply bending speci-mens[C]. In: Proceeding of the 16th European confer-ence on composite materials-ECCM16.Seville; 2014
[22] N.L. Phung,V. Favier,N. Ranc,F. Valès,H. Mughrabi. Very high cycle fatigue of copper: Evolution, morphol-ogy and locations of surface slip markings[J]. Interna-tional Journal of Fatigue. 2014, 63:68-77.

PDF(1515 KB)

Accesses

Citation

Detail

段落导航
相关文章

/