橡胶弹簧结构强度分析及参数优化

丁智平1,曾家兴1,2,林胜2,黄友剑2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 246-251.

PDF(922 KB)
PDF(922 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 246-251.
论文

橡胶弹簧结构强度分析及参数优化

  • 丁智平1,曾家兴1,2,林胜2,黄友剑2
作者信息 +

Structure strength analysis and parameter optimization of rubber spring

  • DING Zhiping1, ZENG Jiaxing1,2, LIN Sheng2, HUANG Youjian2
Author information +
文章历史 +

摘要

采用Mooney-Rivlin超弹本构模型,研究锥形橡胶簧结构参数对刚度和最大主应变范围的影响程度,对锥形簧结构参数进行优化。基于正交试验方法,以结构参数大圆弧半径R、凹槽深度h、型面倾角θ和小圆弧半径r为结构强度影响因素,对锥形簧进行仿真试验,试验结果表明,型面倾角θ对橡胶弹簧刚度和最大主应变范围影响最大,各因素对刚度的影响程度依次为θ>r>R=h,对最大主应变范围的影响程度依次为θ>h>r>R。基于二阶响应面模型和最优拉丁超立方设计方法,以大圆弧半径R、凹槽深度h、型面倾角θ和小圆弧半径r为设计变量,以弹簧刚度为约束条件,以最大主应变范围为目标函数,建立优化数学模型。采用多岛遗传算法(MIGA)对锥形橡胶弹簧结构参数进行优化,并将优化结果代入仿真模型进行试验验证,刚度和最大主应变范围试验结果与最优解结果的误差分别为1.75%、3.57%,相比原结构最大主应变范围降低19.9%,优化效果较好;试验刚度值与最优解刚度值的误差为4.71%,满足技术要求。

Abstract

The influence of the structural parameters of conical rubber spring on the stiffness, and the maximum principal strain range was studied, by using the Mooney-Rivlin hyperelastic constitutive model, and the structural parameters of the conical spring were optimized.Based on the orthogonal test method, the structure parameters of large radius R , groove depth h, surface angle θ and small radius r for structural strength factors, were carried out simulation test for conical spring.The experimental results show that the factor θ has greatest impact on the stiffness and the maximum principal strain range of the rubber spring, the influence degree of each factor on the stiffness is θ>r>R=h, the influence degree on the maximum principal strain range is θ>h>r>R.Based on a second-order response surface model and the Optimal Latin hypercube design method , the arc radius R, groove depth h, surface angle θ and small radius r as design variables, the spring stiffness as constraints, the maximum principal strain range as the objective function, the optimization mathematical model was established.The Multi-Island Genetic Algorithm(MIGA) was used to optimize the structure parameters of conical rubber spring, and the optimization results are substituted into the simulation model to verify.The error between the stiffness and the maximum principal strain range of test results and the optimal solution results were 1.75%, 3.57%, compared with the original structure, the maximum principal strain range was reduced 19.9%, which has a better optimization effect; the error between the test stiffness value and the optimal stiffness value was 4.71%, which meets the technical requirements.

关键词

橡胶弹簧 / 结构强度 / 正交试验 / 参数优化

Key words

 rubber spring / structural strength / orthogonal test / parameter optimization

引用本文

导出引用
丁智平1,曾家兴1,2,林胜2,黄友剑2. 橡胶弹簧结构强度分析及参数优化[J]. 振动与冲击, 2019, 38(12): 246-251
DING Zhiping1, ZENG Jiaxing1,2, LIN Sheng2, HUANG Youjian2. Structure strength analysis and parameter optimization of rubber spring[J]. Journal of Vibration and Shock, 2019, 38(12): 246-251

参考文献

[1] 李志超.橡胶弹性元件疲劳寿命分析与优化方法研究[D].湖南:湖南工业大学,2015:55-62.
LI Zhichao. Study on Analytic Approach and Optimization Method for The Fatigue Life of Rubber Vibration Isolators[D].Hunan: Hunan University of Technology, 2015: 55-62.
[2] 丁智平,杨荣华,黄友剑,等. 基于连续损伤模型橡胶弹性减振元件疲劳寿命分析[J].机械工程学报,2014,50(10):80-86.
DING Zhiping, YANG  Ronghua, HUANG Youjian, et al. Fatigue Life Analysis of Rubber Vibration Damper Based on Continum Damage Model[J]. Journal of Mechanical Engineering, 2014, 50(10): 80-86.
[3] Mars W V, Fatemi A. Multiaxial stress effects on fatigue behavior of filled natural rubber[J]. International Journal of Fatigue, 2006, 28: 521-529.
[4] Santier N, Calletaud G, Piques R. Multiaxial fatigue life prediction for a natural rubber[J]. International Journal of Fatigue, 2006, 28(5/6): 530-539.
[5] VERRON E, ANDRIYANA A. Definition of a new predictor for multiaxial fatigue crack nucleation in rubber[J]. Journal of the Mechanics and Physics of Solids,2008,56:417-443.
[6]  AT-BACHIR M, MARS W V, VERRON E. Energy release rate of small cracks in hyperelastic materials[J]. International Journal of Non-Linear Mechanics,2012,47:22-29.
[7] AUYOB G, NAT-ABDELAZIZ M, ZAIRIA F, et al. A continuum damage model for the high-cycle fatigue life prediction of styrene-butadiene rubber under multiaxial loading[J]. International Journal of Solids and Structures, 2011,48: 2458-2466.
[8] 谭高询,赵文星.梁静强等.发动机悬置非线性刚度橡胶结构设计[J].大众科技,2016,18(206):41-43.
TAN Gaoxun, ZHAO Wenxing, LIANG Jingqiang, et al. Nonlinear Stiffness Rubber Structure Design for Engine Mount [J]. Popular Science & Technology,  2016, 18(206): 41-43.
[9] 张亚新,黄友剑,刘建勋.等应力设计理念在轴箱橡胶弹簧结构改进中的应用[J].电力机车与城轨车辆,2010,33(1):32-34.
ZHANG Yaxin, HUANG Youjian, LIU Jianxun. Application of Equivalent Stress Standard on Optimization Design of Rubber Component[J].Electric Locomotives & Mass Transit Vehicles,2010,33(1):32-34.
[10] 王伟,张飞.平衡悬架橡胶弹簧静刚度特性分析与结构优化[J].机械设计与制造,2012,12:42-44.
WANG Wei, ZHANG Fei. Static Stiffness Analysis and Structure Optimization of Rubber Spring of Tandem Suspension[J].Machinery Design & Manufacture, 2012, 12: 42-44.
[11] 赵建才,李堑,姚振强.橡胶悬置元件结构参数优化设计方法[J].振动与冲击,2008,27(1):16-18.
ZHAO Jiancai, LI Qian, YAO Zhenqiang. Optmal Design Method for Structure Parameters of a Rubber Mount[J]. JOURNAL OF VIBRATION AND SHOCK, 2008, 27(1): 16-18.
[12] 王俊,孙海燕,程海涛等.轨道车辆某型橡胶一系弹簧结构优化[J].橡胶工业,2016,36(9):556-558.
WANG Jun, SUN Haiyan, CHENG Haitao, et al. Structure Improvement of Primary Rubber Spring for Rail Vehicles[J]. China Rubber Industry, 2016,36(9):556-558.
[13] JIANCAI  ZHAO, QIAN  LI, XIAOYAN  SHEN. Finite Element Analysis and Structure Optimization for Improving the Fatigue Life of Rubber Mounts[J]. Journal of Macromolecular Science, Part A: Pure andApplied Chemistry, 2008(45): 542-547.
[14] W.-S.Lee, S.-K.Youn. Topology Optimization of Rubber Isolators Considering Static And Dynamic Behaviours[J]. Industrial Applications, 2004(27): 284-294.
[15] 卜继玲,黄友剑. 轨道车辆橡胶弹性元件设计计算方法[M].北京:中国铁道出版社,2010:41-63.
BU Jiling, HUANG Youjian. The Method to Design Rubber Elastic Elements for Rail Vehicles[M]. Beijing: Chinese Railways Press, 2010:41-63.
[16] 中车株洲电力机车研究所有限公司新材料检测中心.检验报告[R].株洲:株洲时代新材料科技股份有限公司,2016123370,2016.
New Material Test Center of CRRC Zhuzhou Institute Co.,Ltd. Test Report[R].Zhuzhou: Zhuzhou Time New Material Technology Co., Ltd.2016123370,2016.
[17] 曾家兴,丁智平,林胜等. 胶料硬度对超弹本构模型参数及橡胶弹簧刚度的影响[J].湖南工业大学学报,2018,3.
ZENG Jiaxing, DING Zhiping, LIN Sheng, et al. Influence of Rubber Hardness on Parameters of Hyperelastic Constitutive Model and Stiffness of Rubber Spring[J]. Journal of Hunan University of Technology,2018,3.
[18] 赖宇阳,姜欣,方立桥等. Isight参数优化理论与实例解[M]北京:北京航空航天大学出版社,2012.:88-169.
LAI Yuyang, JIANG Xin, FANG Liqiao, et al. Isight parameter optimization theory and examples[M]. Beijing: Beihang University Press, 2012:88-169.
 

PDF(922 KB)

Accesses

Citation

Detail

段落导航
相关文章

/