铰接式空间桁架结构模态试验研究

王桂伦1,2,姜 东1,3,周李真辉1,2,费庆国1,2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 252-257.

PDF(1486 KB)
PDF(1486 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 252-257.
论文

铰接式空间桁架结构模态试验研究

  • 王桂伦1,2,姜  东1,3,周李真辉1,2,费庆国1,2
作者信息 +

Modal experiment for a spherical hinged space truss structure

  • WANG Guilun1,2, JIANG Dong1,3, ZHOU Lizhenhui1,2, FEI Qingguo1,2
Author information +
文章历史 +

摘要

铰接式空间桁架结构铰链多、柔性大,其地面环境下的动力学特性较难准确获取。桁架结构地面模态试验易受试验条件的影响。采用锤击法对桁架结构进行模态试验,获得了桁架结构的模态参数,并通过模态置信准则验证了试验结果的可靠性。结合不同试验工况,分析了悬挂条件和拾振点位置对桁架结构模态试验结果的影响。建立了桁架结构有限元模型并进行模态分析,与试验结果进行对比。试验结果表明:降低悬挂附加刚度有利于避免模态耦合;悬挂点均匀对称布置可减轻铰链滑移对结构整体刚度的削弱,提高试验的可重复性;拾振点居中布置有利于提高辨识模态的完备性;增加悬挂长度可降低悬挂效应对低阶模态的影响。研究结果对大型含铰柔性结构的地面模态试验具有借鉴意义。

Abstract

The accurate dynamics characteristics of a flexible and joint-dominated space truss structure is difficult to obtain in the ground test.The ground modal test of truss structure is susceptible to test conditions.The experimental modal analysis of a spherical hinged space truss was conducted using the hammer method.The modal parameters were obtained based on the experiment results.The MAC (Modal Assurance Criterion) was utilized to verify the reliability of the results.Combined with different cases in the test, the influence of suspension condition and response point position on the modal experimental results of the truss structure was analyzed.The modal analysis of the truss structure under free boundary condition was carried out using FEM.The results obtained through the experiment method and FEM were compared.The results show that lower added stiffness of suspension can avoid modal coupling.distributing suspension points uniformly and symmetrically improves the repeatability of the modal experiment.placing accelerometer near the center of the structure reduces the energy loss of the excitation, which can ensure the completeness of the modal results.increasing length of suspension can reduce the influence of suspension effect on low order modes.

关键词

铰接式桁架 / 模态试验 / 固有频率 / 悬挂

Key words

spherical hinged truss / modal experiment / natural frequency / suspension

引用本文

导出引用
王桂伦1,2,姜 东1,3,周李真辉1,2,费庆国1,2. 铰接式空间桁架结构模态试验研究[J]. 振动与冲击, 2019, 38(12): 252-257
WANG Guilun1,2, JIANG Dong1,3, ZHOU Lizhenhui1,2, FEI Qingguo1,2. Modal experiment for a spherical hinged space truss structure[J]. Journal of Vibration and Shock, 2019, 38(12): 252-257

参考文献

[1] Puig L, Barton A, Rando N. A review on large deployable structures for astrophysics missions[J]. Acta Astronautica, 2010, 67:12-26.
[2] Brown M A. A deployable mast for solar sails in the range of 100–1000m[J]. Advances in Space Research, 2011, 48(11):1747-1753.
[3] Tibert G. Deployable tensegrity structures for space applications[D]. Stockholm: Department of Mechanics, Royal Institute of Technology. 2002.
[4] Zhang R, Guo X, Liu Y, et al. Theoretical analysis and experiments of a space deployable truss structure[J]. Composite Structures, 2014, 112(5):226-230.
[5] Li F, Liu L, Lan X, et al. Modal analyses of deployable truss structures based on shape memory polymer composites[J]. International Journal of Applied Mechanics, 2016, 08(07):1640009.
[6] Qi X, Huang H, Miao Z, et al. Design and mobility analysis of large deployable mechanisms based on plane-symmetric bricard linkage[J]. Journal of Mechanical Design, 2016, 2(2):V05BT07A049.
[7] Tan G.E.B., Pellegrino S. Nonlinear vibration of cable-stiffened pantographic deployable structures[J]. Journal of Sound & Vibration, 2008, 314(3–5):783-802.
[8] 阎绍泽, 陈鹿民, 吴德隆,等. 空间可展结构非线性动力学特性实验研究[J]. 宇航学报, 2002, 23(4):1-3.
Yan S Z, Chen L M, Wu D L, et al. Experimental studies of behavior of nonlinear dynamics of a deployable structure for spacecraft[J]. Journal of Astronautics, 2002, 23(4):1-3.
[9] Guo H, Zhang J, Liu R, et al. Effects of joint on dynamics of space deployable structure[J]. Chinese Journal of Mechanical Engineering, 2013, 26(5):861-872.
[10] Quinn D D. Modal analysis of jointed structures[J]. Journal of Sound & Vibration, 2012, 331(1):81-93.
[11] Folkman S L, Roswell E A, Ferney G D. Influence of pinned joints on damping and dynamic behavior of a truss[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(6):1398-1403.
[12] Bingham J G, Folkman S L. Measured influence of gravity on the dynamic behavior of a truss using pinned joints[C]//Procee
-ding of the 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Salt Lake City, UT: AIAA Press, 1996, 1043-1053.
[13] 陈鹿民, 阎绍泽, 金德闻,等. 含间隙铰空间可展桁架结构的动力学实验[J]. 清华大学学报(自然科学版), 2003, 43(8):1027-1030.
Chen L M, Yan S Z, Jin D W, et al. Dynamic experiment of a space deployable truss structure with joint clearances[J]. Journal of Tsinghua University (Sci&Tech), 2003, 43(8):1027-1030.
[14] Li T, Guo J, Cao Y. Dynamic characteristics analysis of deployable space structures considering joint clearance[J]. Acta Astronautica, 2011, 68(7–8):974-983.
[15] Yang Z, Zheng F B. Dynamics analysis of space robot manipulator with joint clearance[J]. Acta Astronautica, 2011, 68(7–8):1147-1155.
[16] Moon F C, Li G X. Experimental study of chaotic vibrations in a pin-jointed space truss structure[J]. AIAA Journal, 1990, 28(5):915-921.
[17] 关富玲, 戴璐. 双环可展桁架结构动力学分析与试验研究[J]. 浙江大学学报(工学版), 2012, 46(9):1605-1610.
Guan F L, Dai L. Dynamic analysis and test research of double-ring deployable truss structure[J]. Journal of Zhejiang University(Engineering Science), 2012, 46(9):1605-1610.
[18] 曹长明, 关富玲, 徐彦,等. 星载预应力可展开结构收拢状态的确定、分析与试验[J]. 振动与冲击, 2016, 35(22):129-135.
Cao C M, Guan F L, Xu Y, et al. Determination, analysis and test on the prestressed folded state of spaceborne deployable structures[J]. Journal of Vibration and Shock, 2016, 35(22):129-135.

PDF(1486 KB)

Accesses

Citation

Detail

段落导航
相关文章

/