超共振振动转子系统振动同步及同步传动

陈帮1, 夏晓鸥1, 王晓波2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 44-52.

PDF(2225 KB)
PDF(2225 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (12) : 44-52.
论文

超共振振动转子系统振动同步及同步传动

  • 陈帮1, 夏晓鸥1, 王晓波2
作者信息 +

Synchronization behaviors and vibration synchronization transmission of the dual-vibratory-rotor system under superresonant conditions

  • CHEN Bang1, XIA Xiaoou1, WANG Xiaobo2
Author information +
文章历史 +

摘要

针对安装于不同耦合机体上转子的同步问题,提出了简化的双振动转子系统物理模型。利用平均积分法以及Lyapunov稳定性原理讨论了系统的耦合机理,分析了转子的同步条件与稳定性以及实现振动同步传动的条件。以系统耦合最大振动力矩为切入点,论述了系统耦合弹簧刚度对系统同步性能的影响。引入系统特征频率的概念,阐明了系统产生强耦合的原理。研究表明,当耦合频率在特征频率附近时,系统的振动力矩大,耦合作用强。当双转子耦合作用较小,可通过调节耦合弹簧的大小,增强耦合性能实现自同步,这对设计高稳定性以及高容差度的振动系统具有显著的参考意义。最后,分别仿真系统在特定参数条件下的振动情况,验证了理论分析结果。

Abstract

In order to reveal the synchronization characteristics of the system with two rotors mounted on two coupled bodies, a simplified physical model of the dual-vibratory-rotor system was proposed.The coupling mechanism between two rotors was analyzed by the integral method and the Lyapunov principle.The synchronization condition, stability of the system, and vibration synchronization transmission condition were summarized.Taking the maximum vibration torque as the breakthrough point, the influence of the coupling spring stiffness on the synchronous performance was investigated.By introducing the concept of system characteristic frequency, the strong coupling mechanism of the system was expounded.Theoretical research shows that as the coupling frequency is close to the coupling characteristic frequency, the vibration torque is large and coupling performance can be strong.When coupling effects between rotors are weak, self-synchronization can be obtained by adjusting the coupling spring.Synchronization characteristics of the system can be the theoretical basis for designing high-stability and high-tolerance vibration systems.Vibrations of the dual-vibratory-rotor system with different parameters were simulated respectively, and the results are in good agreement with the theoretical analysis.

关键词

振动转子 / 特征频率 / 自同步 / 仿真 / 振动同步传动

Key words

vibratory rotor / exciter / synchronization / simulation / vibration synchronization transmission

引用本文

导出引用
陈帮1, 夏晓鸥1, 王晓波2. 超共振振动转子系统振动同步及同步传动[J]. 振动与冲击, 2019, 38(12): 44-52
CHEN Bang1, XIA Xiaoou1, WANG Xiaobo2. Synchronization behaviors and vibration synchronization transmission of the dual-vibratory-rotor system under superresonant conditions[J]. Journal of Vibration and Shock, 2019, 38(12): 44-52

参考文献

[1] BLEKHMAN, I I. Synchronization in science and technology[M]. New York:ASME Press, 1988:10-49.
[2] BLEKHMAN, I I. Vibrational mechanics[M]. Singapore:World Scientific, 2000:110-150.
[3] WEN Bangchun, FAN Jian, ZHAO Chunyu, et al. Vibratory synchronization and controlled synchronization in engineering[M]. Beijing: Science Press, 2009:1-50.
[4] 秦卫阳, 杨永锋, 王红瑾, 等.非线性振动系统的预测同步方法研究[J].物理学报, 2008, 57(4): 2068-2072.
QIN Weiyang, YANG Yongfeng, WANG Hongjin, et al. Anticipated synchronization for a class of nonlinear vibration systems[J]. Acta Physica Sinica, 2008, 57(4): 2068-2072.
[5] PEÑA R J, AIHARA K, FEY R H B, et al. An improved model for the classical Huygens׳ experiment on synchronization of pendulum clocks[J]. Journal of Sound and Vibration, 2014, 333 (26) :7248-7266.
[6] JOVANOVIC V, KOSHKIN S. Synchronization of Huygens' clocks and the Poincaré method[J]. Journal of Sound and Vibration,2012,331(12):2887-2900.
[7] DILAO R. Antiphase and in-phase synchronization of nonlinear oscillators: the Huygens’s clocks system[J]. Chaos, 2009,19:023118.
[8] CZOLCZYNSKI K, PERLIKOWSKI P, STEFANSKI A, et al. Clustering of Huygens’ clocks[J]. Progress of Theoretical Physics,2009,122(4):1027-1033.
[9] CZOLCZYNSKI K, PERLIKOWSKI P, STEFANSKI A, et al. Clustering and synchronization of n Huygens’ clocks[J]. Physica A Statistical Mechanics and Its Applications, 2009,388(24):5013-5023.
[10] CZOLCZYNSKI K, PERLIKOWSKI P, STEFANSKI A, et al. Why two clocks synchronize: energy balance of the synchronized clocks[J]. Chaos, 2011,21(2):023129.
[11] KOLUDA P, PERLIKOWSKI P, CZOLCZYNSKI K, et al. Synchronization of two self-excited double pendula[J]. The European Physical Journal. Special Topics, 2014, 223(4):613–29.
[12] KOLUDA P, PERLIKOWSKI P, CZOLCZYNSKI K, et al. Synchronization configurations of two coupled double pendula[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(4):977–90.
[13] AKHLAQ M, SHELTAMI T R. RTSP: an accurate and energy-efficient protocol for clock synchronization in WSNs[J]. IEEE Transactions on Instrumentation and Measurement, 2013,62(3):578-589.
[14] DAWID D,JULIUSZ G, JERZY W, et al. Experimental multistable states for small network of coupled pendula[J]. Scientific Reports, 2016,6:29833.
[15] JAROS P, BORKOWSKI L, WITKOWSKI B, et al. Multi-headed chimera states in coupled pendula[J]. European Physical Journal Special Topics, 2015,224(8):1605-1617.
[16] BLEKHMAN I I. Selected Topics in Vibrational Mechanics[M]. Singapore:World Scientific, 2004:2-50.
[17] BLEKHMAN I I, FRADKOV A L, TOMCHINA O P, et al. Selfsynchronization and controlled synchronization: general definition and example design[J]. Mathematics and Computers in Simulation, 2002, 58(4):367-384.
[18] WEN Bangchun, ZHANG Hui, LIU Shuying, et al. Theory and techniques of vibrating machinery and their applications[M]. Beijing: Science Press, 2010:35-80.
[19] ZHAO Chunyu, ZHU Hongtao, ZHANG Yiming. Synchronization of two coupled exciters in a vibrating system of spatial motion[J].  Acta Mechanica Sinica,2010,26(3):477-493.
[20] ZHAO Chunyu, WEN Bangchun, ZHANG Xueliang. Synchronization of the four identical unbalanced rotors in a vibrating system of plane motion[J]. Science China E: Technological Sciences, 2010(53):405–422.
[21] 赵春雨, 赵乾斌, 贺斌, 等. 三质体振动机动力学参数对其性能的影响分析[J]. 振动与冲击, 2015, 34(12): 70-78.
ZHAO Chunyu, ZHAO Qianbin, HE Bin, et al.. Analysis on the Effect of Dynamic Parameters on the Performance of a Three-Mass Vibrating Machine. Journal of Vibration and Shock, 2015, 34(12): 70-78.
[22] 刘劲涛, 刘杰, 孙长青, 等. 反共振振动机械的同步性与同步传动性[J]. 机械工程学报, 2015,51(21):95-103.
LIU Jintao, LIU Jie, SUN Changqing, et al. Vibration synchronization and vibratory synchronization transmission of anti-resonance vibrating machines[J]. Journal of Mechnical Engineering, 2015,51(21):95-103.
[23] 李凌轩, 陈晓哲. 两机反向旋转的振动同步系统在远共振和亚共振状态下的运动选择特性[J]. 振动与冲击, 2017, 36(24): 184-188.
LI Ling-xuan, CHEN Xiaozhe. Motion selection characteristics of a vibrating synchronization system driven by two exciters rotating in opposite directions under sub-resonance and super-resonance states. Journal of Vibration and Shock, 2017, 36(24): 184-188.
[24] ZHANG Xueliang, WEN Bangchun, ZHAO Chunyu. Synchronization of three homodromy coupled exciters in a non-resonant vibrating system of plane motion[J]. Acta Mechanica Sinica, 2012,28(5):1424–35.
[25] ZHANG Xueliang, WEN B, Zhao C. Experimental investigation on synchronization of three co-rotating non-identical coupled exciters driven by three motors[J]. Journal of Sound and Vibration, 2014,333(13):2898–908.
[26] HOU Yongjun. Dynamics analysis of vibrating screen based on double compound pendulum with single motor driving[J]. Applied Mechanics and Materials, 2014,459:335-341.
[27] FANG Pan, HOU Yongjun, NAN Yanghai. Synchronization of two homodromy rotors installed on a double vibro-body in a coupling vibration system[J]. Plos One, 2015,10(5):e0126069.
[28] FANG Pan, HOU Yongjun, NAN Yanghai, et al. Study of synchronization for a rotor-pendulum system with Poincare method[J]. Journal of Vibroengineering, 2015, 17(5):2681-2695.

PDF(2225 KB)

434

Accesses

0

Citation

Detail

段落导航
相关文章

/