针对并联驱动电液系统的内力耦合问题,建立了振动系统的动力学模型,分析了干扰耦合的产生原因。利用自由度分解实现了多个激振器的独立控制,通过内力反馈解耦控制消除系统在运行过程中产生的耦合内力。在此基础上,利用三状态控制器对系统进行加速度闭环控制,改善系统的动态特性;通过引入前馈逆模型控制策略拓展系统频宽,利用并联驱动电液试验台对振动控制策略进行实验验证,试验结果证明提出的控制策略能够提高振动控制精度。
Abstract
In order to suppress internal force coupling of a parallel driven electro-hydraulic system, a dynamic model of the vibration system was established and the causes of coupling disturbance were analyzed.Then, the degree-of-freedom decomposition was applied to realize independent control of eight exciters, an internal force decoupling controller was applied to eliminate the coupling internal force in the process of operation.On this basis, a three-variable controller was applied to realize acceleration closed-loop control of the electro-hydraulic system and improve dynamic characteristics of the vibration system, and a feedforward inverse controller was applied to expand the system bandwidth.Performances of the proposed control strategy were validated through experiments using a parallel driven electro-hydraulic testing rig, and the experimental results demonstrate that the proposed control strategy can improve vibration accuracy.
关键词
并联驱动 /
电液系统 /
内力解耦 /
前馈补偿
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张连朋,杨炽夫,杨志东,等. 冗余驱动液驱振动台台阵系统内力分析及其抑制方法研究[J]. 振动与冲击,2017,36(3):83-92.
ZHANG Lianpeng,YANG Chifu,YANG Zhidong,et al. Inner coupling force analysis and suppression for redundant-drive hydraulic shaking tables [J]. Journal of Vibration and Shock,2017,36(3):83-92.
[2] 张兵,谢方伟,张新星,等.基于子带自适应滤波的振动台功率谱复现[J].振动与冲击,2016,35(19):138-142,167.
ZHANG Bing, XIE Fangwei, ZHANG Xinxing, et al. PSD replication of a shaking table based on subband adaptive filtering algorithm [J]. Journal of Vibration and Shock,2016,35(19):138-142,167.
[3] 严侠,邓婷,王珏. 液压振动台时域跟踪控制技术研究[J]. 振动与冲击,2017,36(15):71-76.
YAN Xia,DENG Ting,WANG Jue. Time domain tracking vibration control technique for hydraulic shaking tables [J]. Journal of Vibration and Shock,2017,36(15):71-76.
[4] 何景峰, 李保平, 佟志忠, 韩俊伟. 液压驱动冗余振动台自由度控制及内力协调[J]. 振动与冲击, 2011, 30(3): 74-78.
HE Jing-feng, LI Bao-ping, TONG Zhi-zhong, et al. DoF control and inner force balancing of hydraulically redundant actuated shaking table [J]. Journal of Vibration and Shock, 2011, 30(3): 74-78.
[5] YANG C F, QU Z Y, HAN J W. Decoupled-space control and experimental evaluation of spatial electro- hydraulic robotic manipulators using singular value decomposition algorithms [J]. IEEE Transaction on Industrial Electronics, 2014, 61(7):3427-3438.
[6] 沈刚, 朱真才, 李翔, 等. 三轴六自由度电液振动台解耦控制[J]. 振动与冲击, 2015, 34(19):1-7.
SHEN Gang, ZHU Zhencai, LI Xiang, et al. Decoupling control for a triaxial 6-DOF electro- hydraulic shaking table [J]. Journal of Vibration and Shock, 2015, 19:1-7.
[7] SHEN G, LI X, ZHU Z C, et al. Acceleration tracking control combining adaptive control and off-line compensators for six-degree-of-freedom electro- hydraulic shaking tables [J]. ISA Transactions, 2017, 70:322–337.
[8] 栾强利, 陈章位, 徐进荣, 等. 地震模拟振动台三参量控制参数整定技术的研究[J]. 振动工程学报, 2014, 27(3): 416-425.
LUAN Qiangli, CHEN Zhangwei, XU Jinrong, et al. Three-variable control parameter tuning technology on seismic simulation shaking tables [J]. Journal of Vibration Engineering, 2014, 27(3): 416-425.
[9] 马希彬,陈章位,赵玉刚,等. 基于驱动谱修正迭代控制算法的三轴振动控制研究[J]. 振动与冲击,2018,37(3):85-90.
MA Xibin,ZHAO Yugang,WANG Wei,et al. Three-axis vibration control based on drive spectrum modified iterative control algorithm [J]. Journal of Vibration and Shock,2018,37(3):85-90.
[10] MAHNAZ H, JAFAR G, JAVAD A. Adaptive control for a class of MIMO nonlinear time delay systems against time varying actuator failures [J]. ISA Transactions, 2015, 57:23-42.
[11] LI G, SHEN G, ZHU Z C, et al. Sine phase compensation combining an amplitude phase controller and a discrete feed-forward compensator for electro-hydraulic shaking tables [J]. Transactions of the Institute of Measurement and Control, 2017, 1-13.
[12] PLUMMER A R. Model-based motion control for multi-axis servohydraulilc shaking tables [J]. Control Engineering Practice,2016,53:109-122.
[13] SHEN G,ZHU Z C,LI X,et al. Real-time electro-hydraulic hybrid system for structural testing subjected to vibration and force loading [J]. Mechatronics,2016,33:49-70.
[14] PINTELON R, SCHOUKENS J. System identification: a frequency domain approach [M]. New York: John Wiley & Sons, 2012.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}