盐湖地区氯离子侵蚀环境下, RC桥梁结构时变车桥耦合振动是一个复杂的多因素、高度非线型过程,且随着列车运行速度的增加,这种特性逐渐增强,因此,对于使用寿命评估需要更高要求的预测模型。采用二系主动悬挂系统建立RC桥梁车桥垂向耦合振动模型,基于虚拟激励法,求解列车在不同运行速度时的垂向振动位移,并以该位移和能量守恒定律为条件,确定荷载影响因子 的取值。基于Fick第二扩散定律理论,充分考虑混凝土氯离子扩散系数的时间依赖性、轨道不平顺激励及高速列车运行速度对RC桥梁结构垂向振动影响等因素,得到一种既考虑荷载影响因子 又考虑氯离子结合能力的RC桥梁氯离子扩散修正模型。仿真实验结果表明,与传统的未考虑列车运行速度影响因素的氯离子扩散模型相比,本文所提出的RC桥梁氯离子扩散修正模型更加合理,对于盐湖地区既有RC桥梁结构使用寿命的预测将更有实际工程意义。
Abstract
The time-dependent vehicle-bridge coupling vibration of reinforced concrete (RC) bridge structures corroded by chloride attack is a complex multi-factor and seriously non-linear process in Salt Lake regions.The characteristic is gradually enhanced with wind speed and train speed, which results in higher requirement prediction model for life prediction assessment of RC bridge structures.A vehicle-bridge vertical coupled vibration model of RC bridge was established based on the secondary active suspension system.Based on the pseudo-excitation method, the vertical vibration displacement of the train at different running speed was solved, and the influence factors of load f(δ) were determined by the displacement and the energy conservation law.Based on the theory of the Fick second diffusion law, the time dependence of chloride diffusivity of concrete, the influence of track irregularity excitation and the running speed of high-speed train on the vertical vibration of RC railway bridge members were fully considered.Therefore, a modified model for the chloride diffusion of RC bridge was established, which considers both the influence factor of load f(δ) and the chloride binding capacity.The simulation results show that compared with the traditional chloride diffusion model without considering the influence factors of train running speed, the modified chloride diffusion model of the RC railway bridge is more reasonable.It is more practical for predicting structural service life of existing RC bridges in the Saline Lake regions.
关键词
盐湖地区 /
RC桥梁结构 /
氯离子 /
垂向振动 /
荷载影响因子
{{custom_keyword}} /
Key words
Salt Lake regions /
RC bridge structure /
Chloride /
Vertical vibration /
Influence factor of load
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郭冬梅,项贻强,程 坤,等.沿海在役钢筋混凝土桥梁的钢筋锈蚀模型[J].哈尔滨工业大学学报,2012,44(12):100−104.
GUO Dongmei, XIANG Yiqiang, CHENG Kun, et al. Steel corrosion model of in-service RC bridge near coastal areas [J]. JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY, 2012, 44(12):100−104.
[2] 余红发,孙 伟,麻海燕,等.盐湖地区钢筋混凝土结构使用寿命的预测模型及其应用[J].东南大学学报(自然科学版),2002,32(2):638−642.
YU Hongfa, SUN Wei, Ma Haiyan, et al. Prediction model for service life of reinforced concrete structures in salt lakes and its applications [J]. JOURNAL OF SOUTHEAST UNIVERSITY(Natural Science Edition), 2002, 32(2):638−642.
[3] Peter locher, Charles Fermaud, Hans Bohnenblust. Effects of Strong Cross winds on High-speed train a Risk Assessment Approach [J]. Probabilistic safety assessment and management, 2000, 4 (1):2039-2045.
[4] 吴庆令.海洋环境钢筋混凝土受弯结构的耐久性与寿命预测[D].南京:南京航空航天大学,2010.
WU Qingling. Research on Flexural RC Components Exposed to Marine Environments: Durability and Life Prediction[D], Nanjin: Nanjing University of Aeronautics and Astronautics, 2010.
[5] Wael Slika, George Saad. An Ensemble Kalman Filter approach for service life prediction of reinforced concrete structures subject to chloride-induced corrosion [J]. Construction and Building Materials, 2016, 115:132−142.
[6] 王连春,李金辉,周丹峰,等.磁浮列车-桥梁耦合自激振动机理分析与仿真验证[J],振动与冲击,2017,36(18):13-19,55.
WANG Lianchun, LI Jinhui, ZHOU Danfeng, et al. Principle analysis and simulation verification on the vehicle-bridgecoupled self-excited vibration of maglevs [J], JOURNAL OF VIBRATION AND SHOCK, 2017, 36 (18):13-19,55.
[7] 晋智斌,李小珍,朱 艳,等.列车-桥梁耦合系统非线性随机振动分析[J],铁道学报,2017,39(9):109-116.
JIN Zhibin, LI Xiaozhen, ZHU Yan, et al. Random Vibration Analysis of Nonlinear Vehicle-bridge Dynamic Interactions [J], JOURNAL OF THE CHINA RAILWAY SOCIETY, 2017, 39 (9):109-116.
[8] 施锦杰,孙伟.混凝土中钢筋锈蚀研究现状与热点问题分析[J],硅酸盐学报,2010,38(9):1753-1764.
SHI Jinjie, SUN Wei. Recent Research on Steel Corrosion in Concrete [J], JOURNAL OF THE CHINESE CERAMIC SOCIETY, 2010, 38 (9):1753-1764.
[9] 张芹,郭力.氯离子侵蚀下钢筋混凝土非线性锈胀破坏过程模拟[J],湖南大学学报(自然科学版),2017,44(5):44-52.
ZHANG Qin, GUO Li. Simulation of Nonlinear Corrosion Damage Process in Reinforced Concrete under Chloride Environment [J], Journal of Hunan University(Natural Sciences), 2017, 44 (5):44-52.
[10] 洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998:344.
[11] Thomas M D A, Bamforth P B. Modelling chloride diffusionin concrete-effect of fly ash and slag [J]. Cement and Concrete Research, 1999, 29(4): 487-495.
[12] Choe D E, Gardoni P, Rosowsky D, et al. Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion [J]. Reliability Engineering and System Safety, 2007, 93(5): 383-393.
[13] 李小珍,朱 艳,晋智斌.车辆-桥梁耦合系统垂向振动的随机分析[J],钢结构,2010,25(140):13-16,5.
LI Xiaozhen, ZHU Yan, JIN Zhibin. Stochastic Analysis of Train Bridge Time Varying Vertical System [J]. Steel Construction, 2010, 25(140): 13-16, 5.
[14] 常庆斌,左言言,杨 建.城市轨道车辆车体横向振动的仿真[J].噪声与振动控制,2012,22 (1):55-58.
CHANG Qingbin, ZUO Yanyan, YANG Jian. Simulation of Transverse Vibration of Urban Rail Vehicle Body[J]. Noise and Vibration Control, 2012, 22(1):55-58.
[15] 李慧乐.基于车桥耦合振动的桥梁动应力分析及疲劳性能评估[D].北京:北京交通大学,2016:48-60.
LI Huile. Dynamic Stress Analysis and Fatigue Performance Assessment of Bridges Based on Vehicle-Bridge coupling Vibration[D]. Beijing: Beijing Jiaotong University, 2016:48-60.
[16] 王元站,田双珠,王军,等.不同环境条件下考虑荷载影响的氯离子扩散模型[J].水道港口, 2012,31(2):125-131.
WANG Yuanzhan, TIAN Shuangzhu, WANG Jun, et al. Chloride Diffusion Model of RC Member in Various Marine Environments Considering Loading Effect[J]. Journal of Waterway and Harbor, 2010, 31(2):125-131.
[17] 余红发,孙伟,鄢良慧,等.混凝土使用寿命预测方法的研究I—理论模型[J].硅酸盐学报,2002,30(6):686-690.
YU Hongfa, SUN Wei, YAN Lianghui, et al. Study on Prediction of Concrete Service Life1-Theoretical Model[J]. Journal of the Chinese Ceramic Society, 2002, 30(6): 686-690.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}