研究载机空中滚转条件下的空空导弹弹射分离时产生的横向位移问题。采用伪坐标形式的拉格朗日方程建立了机载弹射发射机构高速伸展过程的动力学模型,对战机滚转条件下的导弹弹射分离动力学特性进行数值仿真,仿真表明:弹射分离速度正常,但是由于受科氏力作用导致弹射机构横向变形显著,致使导弹尾部横向位移大,威胁载机与导弹的发射分离安全性。由于重量和空间限制以及弹射作动时间很短,传统的提高机构刚度法和主动控制法在工程上难以实施,针对横向位移难题,提出对弹射机构前后链路进行刚度匹配设计的新思路,仿真和试验表明该方法有效且易于工程实现。为战机滚转条件下的导弹发射这一新课题提供理论指导。
Abstract
Here, lateral displacement of an air-to-air missile ejection separation with aircraft rolling was studied. Using Lagrange’s equations in form of quasi-coordinates, a dynamic model for high-speed stretching process of an airborne ejection launcher was established. Dynamic characteristics of missile ejection separation with aircraft rolling were numerically simulated. The results showed that the missile ejection separation speed is normal, but the lateral deformation of the airborne ejection launcher is significant due to the action of Coriolis force to cause large later displacement of the missile tail, and threat the separation safety between aircraft and ejected missile. Due to constraints of weight and space as well as very short ejection actuation time, the traditional mechanism stiffness-enhancing method and the active control method were difficult to implement in engineering. For this difficult problem, a new idea to do a stiffness matching design for front and rear links of the ejection launcher was proposed. Simulations and tests showed that this method is effective and easy to realize in engineering; it provides a theoretical guidance for missile ejection under the condition of aircraft rolling.
关键词
载机滚转 /
伪坐标 /
横向位移 /
内埋弹射 /
刚度匹配 /
发射安全性
{{custom_keyword}} /
Key words
rotary aircraft /
quasi-coordinates /
lateral deformation /
embedded ejection /
stiffness matching /
launching safety.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘刚,肖中云,王建涛等. 考虑约束的机载导弹导轨发射数值模拟[J]. 空气动力学学报,2015,33(2):192-197.
Liu Gang,Xiao Zhongyun, Wang Jiantao,et al. Numerical simulation of missile air-launching process under rail slideway constraints[J]. Acta Aerndynamica Sinica,2015,33(2):192-197.
[2] 王林鹏,王汉平,杨鸣等. 运动导弹激励下柔性导轨振动的多体动力学分析法[J]. 航空学报,2014,35(3):756-763.
WANG Linpeng,WANG Hanping, YANG Ming, et al. Multi-body Dynamics Analysis Method for Vibration of Flexible Guide Activated by Moving Missile [J]. Acta Aeronautica et Astronautica Sinica,2014, 35(3),756-763.(in Chinese)
[3] 刘浩,周军,张士卫. 载机大机动条件下空空导弹弹射发射动力学研究[J]. 振动与冲击, 2018, 37(2): 24-29.
LIU Hao , ZHOU Jun, ZHANG Shi Wei. Launch dynamic characteristics research of air-to-air missile under large maneuvering flight of steal aircraft. Journal of Vibration and Shock, 2018, 37(2): 24-29.
[4]薛飞, 金鑫, 王誉超,等. 内埋武器高速投放风洞试验技术[J]. 航空学报, 2017, 38(1):59-65.
XUE F, JIN X ,WANG Y C, et al. Wind tunnel test technique on high speed weapon delivery from internal weapons bay[J]. Acta Aeronautica ET Astronautica Sinica, 2017, 38(1):59-65.
[5 ] 王许可. 机载武器发射系统刚柔耦合动力学仿真[J]. 四川兵工学报,2014,35(7):9-12,20.
WANG Xu-ke. Dynamical Simulation of Airborne Eject Launcher Relating to the Coupling of Rigidity and Flexibility [J]. Journal Of Ordnance Equipment Engineering,2014,35(7):9-12,20. (in Chinese)
[6] 张群峰, 闫盼盼, 黎军. 战斗机武器外挂投放与内埋投放比较[J]. 北京航空航天大学学报, 2017, 43(6):1085-1097.
ZHANG Q F, YAN P P , LI J. Comparison between external store separation and buried store separation of fighter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1085- 1097.
[7] Carter R, Lind R. Parametric Modeling for Store Separation Aerodynamics using System Identification[C] // AIAA Atmospheric Flight Mechanics Conference. 2013.
[8] MERRICK J D. Influence of mach number and dynamic pressure on cavity tones and freedrop trajectories:AFLTENY-14-M-36[R].Ohio: Wright- Patterson Air Force Base, 2014.
[9] Li jewski L E, Suhs N E. Time-accurate computational fluid dynamics approach to transonic store separation trajectory prediction[J]. Journal of Aircraft, 2012, 31(31):886-891.
[10] Stephen R Perillo. Challenges and Emerging Trends in Store Separation Engineering: an air force seek eagle office perspective[R].AIAA 2009- 101.
[11] DAMS M B. Store Trajectory Response to Unsteady Weapons Bay Flow fields [R] . AIAA 2009 -547.
[12] 刘莹莹,周军. 挠性多体航天器姿态动力学建模与分析[J]. 飞行力学,2005,23(3):60-63.
LIU Ying-ying, ZHOU Jun. Dynamics Modeling and Analysis for a Flexible Multi-Body Spacecraft [J]. Flight Dynamics,2005,23(3):60-63.
[13] 陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996.
LU you-fang. Dynamics of flexible multi-body systems[M]. Bei jing : higher education press,1996.
[14] 刘莹莹,周军. 挠性卫星轨控期间动力学与姿态控制[J].空间控制技术与应用,2008,34(2):9-13.
LIU Ying-ying, ZHOU Jun. Dynamics and Attitude Control of Flexible Satellite during Orbital Maneuver [J]. Aerospace Control and Application,2008,34(2):9-13.
[15]刘汉武, 张华, 王金童,等. 考虑柔性多体特征的复杂航天器分离动力学仿真分析[J]. 宇航学报, 2017, 38(4):352-358.
LIU H W, ZHANG H, WANG J T, et al. Simulation Analysis of Complex Spacecraft Separation Dynamics Considering Characteristics of Flexible Multi-Body[J], Journal of Astronautics, 2017, 38(4): 352-358.
[16]韩世昌, 黄亚宇, 胡斌. 基于虚拟样机技术的动力稳定车新型稳定装置研究[J]. 振动与冲击, 2016, 35(21):214-219.
HAN S C, HUANG Y Y, HU B. A new type of stabilizing device for a dynamic track stabilizer based on virtual prototype technology[J]. Journal of Vibration and Shock, 2016, 35(21):214-219.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}