周期性阵风流对通气航行体超空泡形态及流体动力特性影响

王威,王聪,李聪慧,杜严峰

振动与冲击 ›› 2019, Vol. 38 ›› Issue (13) : 208-214.

PDF(1785 KB)
PDF(1785 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (13) : 208-214.
论文

周期性阵风流对通气航行体超空泡形态及流体动力特性影响

  • 王威,王聪,李聪慧,杜严峰
作者信息 +

Effects of periodic gust flow on super-cavitation morphology and hydrodynamic characteristics of a ventilated vehicle

  • WANG Wei,WANG Cong,LI Conghui,DU Yanfeng
Author information +
文章历史 +

摘要

使用动态网格技术,数值模拟研究了周期性阵风流对通气航行体的超空泡形态和流体动力特性影响。首先通过数值计算的结果与实验数据对比,验证了动态网格技术数值模拟周期性阵风流的可行性,然后基于该模拟方法分析了周期性阵风流作用下通气超空泡航行体的空泡形态演化过程及流体动力变化特点。结果表明:在周期性阵风流作用下,通气航行体的超空泡形态呈现周期性变化,航行体沾湿区域的大小和位置也随之发生变化,进而引起了流体动力系数的周期性变化;航行体沾湿区域的阻力占总阻力的比例随着沾湿面积的增加而增大;沾湿区域升力占总升力的比例较大,沾湿区域的空泡闭合线附近存在高压区,使得沾湿区域的面积虽小,但却可以为航行体提供很大的升力。

Abstract

Effects of periodic gust flow on super-cavitation morphology and hydrodynamic characteristics of ventilated vehicle were numerically simulated with the dynamic grid technique. Firstly, comparing the numerical computation results with test data, the feasibility of the dynamic grid technique being used to simulate periodic gust flow was verified. Then, based on this simulation method, the super-cavitation morphology evolution process and hydrodynamic change features of a ventilated vehicle under the action of periodic gust flow were investigated. The results showed that under the action of periodic gust flow, super-cavitation morphology of the ventilated vehicle reveals a periodic change, size and position of wetted area of the vehicle also change to cause periodic change of hydrodynamic coefficient; the proportion of the vehicle’s wetted area resistance in total resistance increases with increase in wetted area; the proportion of wetting area lift in total lift is larger, there is a high pressure zone near cavitation closing line ofwetted area to make small wetted area provide a very big lift for vehicle.

关键词

阵风流 / 通气超空泡 / 沾湿区域 / 流体动力

Key words

 Gust flow / Ventilated supercavity / Wetted area / Fluid dynamics

引用本文

导出引用
王威,王聪,李聪慧,杜严峰. 周期性阵风流对通气航行体超空泡形态及流体动力特性影响[J]. 振动与冲击, 2019, 38(13): 208-214
WANG Wei,WANG Cong,LI Conghui,DU Yanfeng. Effects of periodic gust flow on super-cavitation morphology and hydrodynamic characteristics of a ventilated vehicle[J]. Journal of Vibration and Shock, 2019, 38(13): 208-214

参考文献

[1] Ceccio S L. Friction Drag Reduction of External Flows With Bubble and Gas Injection[J]. Annual Review of Fluid Mechanics, 2010, 42: 183–203.
[2] Reichardt H. The Laws of Cavitation Bubbles as Axially Symmetrical Bodies in a Flow[R]. Great Britian: Ministry of Aircraft Productuin, 1946(766):322-326.
[3] Savchenko Y N. Supercavitation-problems and perspectives[C]. Cav2001, USA: National Academy of Sciences-Institute of Hydromechanics, 2001, 1-8.
[4] Lee Q T, Xue L P, He Y. S. Experimental study of ventilated supercavities with a dynamic pitching model[J]. Journal of Hydrodynamics, 2008, 20(4): 456-460.
[5] Pan Z. C., Lu C. J., Chen Y., Hu S. L. Numerical study of periodically forced-pitching of a supercavitating vehicle[J]. Journal of Hydrodynamics, 2010,22(5):899-904.
[6] Yu K P, Zhang G, Zhou J J, Li Z W. Numerical study of the pitching motions of supercavitating vehicles[J]. Journal of Hydrodynamics, 2012, 24(6): 951-958.
[7] Arndt R E A, Hambleton W. T, Kawakami E, Amromin E L. Creation and Maintenance of Cavities Under Horizontal Surfaces in Steady and Gust Flows[J]. Journal of Fluids Engineering, 2009, 131, 111301.
[8] Lee S J, Kawakami E, Arndt R. E. A. Investigation of the Behavior of Ventilated Supercavities in a Periodic Gust Flow[J]. Journal of Fluids Engineering, 2013, 135, 081301.
[9] Lee S J, Kawakami E, Karn A, Arndt R E A. A comparative study of behaviors of ventilated supercavities between experimental models with different mounting configurations[J]. Fluid Dynamics Research, 2016, 48: 1-12.
[10] Sanabria D E, Balas G, IEEE F, Arndt R E A. Modeling, Control, and Experimental Validation of a High-Speed Supercavitating Vehicle[J]. IEEE Journal of Oceanic Engineering, 2015, 40(2): 362-373.
[11] Karn A, Arndt R E A, Hong J. An experimental investigation into supercavity closure mechanisms[J]. J. Fluid mech, 2016, 789: 259-284.
[12] Karn A, Arndt R E A, Hong J. Dependence of supercavity closure upon flow unsteadiness[J]. Experimental Thermal and Fluid Science, 2015, 68, 493-498.
[13] Karn A, Arndt R E A, Hong J. Gas entrainment behaviors in the formation and collapse of a ventilated supercavity[J]. Experimental Thermal and Fluid Science, 2016, 79, 294-300.
[14] Yu K P, Zhou J J, Min J X, Zhang G. A contribution to study on the lift of ventilat-ed supercavitating vehicle wich low Froude number[J]. Journal of Fluids Engineering, 2010, 132, 111303.
[15] 潘展程. 通气超空泡流动结构与稳定性研究[D]. 上海: 上海交通大学, 2013: 13-21.
Pan Z C. Study on the stability and flow structure of ventilated supercavitating flow[D]. Shanghai: Shanghai Jiaotong University, 2013: 13-21.
[16] 周景军. 通气超空泡流动及航行体流体动力数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 70-74.
Zhou J J. Numerical simulation study on the ventilated supercavitating flow and hydrodynamics of vehicle[D]. Harbin: Harbin Institute of Technology, 2011: 70-74.
[17] 胡世良, 鲁传敬, 潘展程. 通气空泡重力效应研究[J].水动力学研究与进展, 2009, 24 (6): 786-792.
Hu S L, Lu C J, Pan Z C. Research on the gravity effect of ventilated cavitating flows[J]. Chinese Journal of hydrodynamics, 2009, 24 (6): 786-792.
[18] 陈鑫. 通气空泡流研究[D]. 上海: 上海交通大学, 2006: 56-59.
Chen X. An investigation of the ventilated cavitating flow[D]. Shanghai: Shanghai Jiaotong University, 2006, 56-59.
[19] 李其弢, 胡天群, 何友声. 超空泡航行体摆动实验研究[C]. 第七届全国实验流体力学学术会议. 2007:114-119.
Li Q T, Hu T Q, He Y S. Experimenal investigation of supercavitating vehicle motion with oscillatory mode[C]. Seventh National Experimental Hydrodynamics Conference. 2007:114-119.

PDF(1785 KB)

3696

Accesses

0

Citation

Detail

段落导航
相关文章

/