According to actual physical process of explosive bolt action, it can be divided in time sequence into two stages of explosive unlock and shock. Here, the numerical models for an explosive bolt’s explosive unlock process and shock one under pre-tightened state were established, respectively to analyze effects of main factors of impact load, such as, explosive quantity, pre-tightened force and impact position’s material on structural response under coupled effect. The results showed that in explosive unlock stage, structural responses increase non-linearly with increase in explosive quantity, and increase linearly with increase in pre-tightened force; in near-field, change of explosive quantity dominates structural responses; in mid-field, structural responses are controlled by both explosive quantity and pre-tightened force; in far-field, structural responses are dominated by change of pre-tightened force; in shock stage, structural responses are closely related to material properties of impact position, materials with smaller yield strength and larger plastic deformation ability have better energy-absorbing effect to cause the minimum structural response.
WANG Junping, MAO Yongjian, L Jian, HUANG Hanjun .
Main influence factors on pyrotechnic-shock response of explosive bolts[J]. Journal of Vibration and Shock, 2019, 38(13): 42-49
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MIL-STD-810F, Department of Defense Test Method Standard: Environmental Engineering Considerations and Laboratory Tests, Method 517 [S], 2000: 517-1-517-24.
[2] 军用装备实验室环境试验方法 第27部分:爆炸分离冲击试验 [S]. GJB 150.27-2009. 2009. (Laboratory Environmental Test Methods for Military Materiel——Part 27: Pyroshock Test [S]. GJB 150.27-2009. 2009.)
[3] 丁继锋, 赵欣, 韩增尧. 航天器火工冲击技术研究进展[J]. 宇航学报, 2014, 35(4): 1339-1349. (Ding Jifeng, Zhao Xin, HAN Zengyao. Research Development of Spacecraft Pyroshock Technique [J]. Journal of Astronautics, 2014, 35(4): 1339-1349.
[4] 毛勇建, 李玉龙. 爆炸分离冲击环境的模拟试验技术进展[J]. 导弹与航天运载技术. 2007, (4): 37-44. (Mao Yongjian, Li Yulong. Advances in Simulation Techniques of Pyroshock Environments [J]. Missiles and Space Vehicles, 2007, (4): 37-44. (in Chinese))
[5] 王军评, 毛勇建, 黄含军. 点式火工装置冲击载荷作用机制的数值模拟研究[J]. 振动与冲击, 2013, 32, (2):11-13. (Wang Junping, Mao Yongjian, Huang Hanjun. Numerical simulation for impulsively loading mechanism of a point pyrotechnic separation device [J]. Journal of Vibration and Shock, 2013, 32, (2):11-13.)
[6] NASA-STD-7003, NASA Technical Standard: Pyroshock Test Criteria [S], 1999.
[7] 张建华. 航天产品的爆炸冲击环境技术综述[J]. 导弹与航天运载技术, 2005, (3):30-36. ( Zhang Jianhua. Pyroshock Environment of Missiles and Launch Vehicles [J]. Missiles and Space Vehicles, 2005, (3):30-36.)
[8] 赵欣, 丁继锋, 韩增尧等. 航天器火工品冲击模拟试验及响应预示方法研究综述[J]. 爆炸与冲击, 2016, 35(2):259-268.( Zhao Xin, Ding Jifeng, Han Zengyao, et al. Review of pyroshock simulation and response prediction methods in spacecraft [J]. Explosion and Shock Waves, 2016, 35(2):259-268.)
[9] 陈荣, 卢芳云, 王瑞峰等. 爆炸分离装置中保护罩安全性能分析[J]. 导弹与航天运载技术, 2007, (4): 13-16. (Chen Rong, Lu Fangyun, Wang Ruifeng, et al. Analyses on the Security of Retainer in the Explosive Separation System [J]. Missiles and Space Vehicles, 2007, (4): 13-16. ( in Chinese))
[10] 刘怀亮, 崔德林,阎绍泽. 无污染爆炸螺栓动态断裂特性的数值模拟[J]. 清华大学学报, 2015, 55(3):292-297. ( Liu Huailiang, Cui Delin, Yan Shaoze. Numerical simulations of the dynamic fracture of non-contamination explosive bolts [J]. Journal of Tsinghua University (Science and Technology) 2015, 55(3):292-297.)
[11] 曹乃亮, 徐宏, 辛宏伟等. 冲击载荷作用下火工分离保护装置的建模与分析[J]. 振动与冲击, 2015, 34(8): 20-25. ( Cao Nailiang, Xu Hong, Xin Hongwei, et al. Modeling and analysis of a pyrotechnic separation protecting device under explosion shock [J]. Journal of Vibration and Shock, 2015, 34(8): 20-25.)
[12] 陈敏, 隋允康, 阳志光. 宇航火工分离装置爆炸分离数值模拟[J]. 火工品, 2007, (5): 5-8. (Chen Min, Sui Yunkang, Yang Zhiguang. Numerical Simulation of Exploding Separation for Aerospace Pyrotechnical Actuated Separation Device [J]. Initiators & Pyrotechnics, 2007, (5): 5-8. (in Chinese))
[13] Cambier F, Conti C, Dehombreux P, et al. Development of a Test Facility to Simulate Pyroshock Environments in a Laboratory [C]. In: Proceedings of the 5th International Conference on Structures Under Shock and Impact. 1998: 273-282.
[14] 黄含军, 王军评, 毛勇建等. 爆炸螺栓预紧力对冲击响应影响分析[J]. 振动与冲击, 2015, 34(16): 166-169.( Huang Hanjun, Wang Junping, Mao Yongjian, et al. Influence of pretightening force of explosive bolts on impulse response[J]. Journal of Vibration and Shock, 2015, 34(16): 166-169.)
[15] 张欢, 刘天雄, 李长江等. 航天器火工冲击环境防护技术现状与应用[J]. 航天器工程, 2014,23(2):104- 113. (Zhang Huan, Liu Tianxiong, Li Changjiang, et al. Status and Application Analysis of Spacecraft Pyroshock Protection Techniques [J]. Spacecraft Engineering, 2014,23(2):104- 113.)
[16] Yongjian Mao, Yulong Li, Ying Chen, et al. Hyperelastic behavior of two rubber materials under quasistatic and dynamic compressive loadings—testing, modeling and application [J]. Polimery, 2015, 60, nr 7-8:516-522.
[17] 王永刚, 胡时胜, 王礼立. 爆炸荷载下泡沫铝材料中冲击波衰减特性的实验和数值模拟研究[J]. 爆炸与冲击, 2003, 23( 6): 516-521. (Wang Yonggang, Hu Shisheng, Wang Lili. Shock attenuation in aluminum foams under explosion loading [J]. Explosion and Shock Waves, 2003, 23 (6): 516-521.)
[18] Sergey L. Lopatnikova, Bazle A. Gama, Md. Jahirul Haquea, et al. High-velocity plate impact of metal foams[J]. Int J Impact Eng, 2004, 30:421-445.