基于频谱能量形态拟合的加速度积分方法研究

陈太聪,张奇

振动与冲击 ›› 2019, Vol. 38 ›› Issue (13) : 7-12.

PDF(810 KB)
PDF(810 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (13) : 7-12.
论文

基于频谱能量形态拟合的加速度积分方法研究

  • 陈太聪,张奇
作者信息 +

Acceleration integration method based on frequency spectral energy morphological fitting

  • CHEN Taicong, ZHANG Qi
Author information +
文章历史 +

摘要

针对带噪加速度信号的积分问题,提出一种基于频谱能量形态拟合的频域积分新方法,定义为有效频段法。假设峰值主频临近区域的频谱曲线符合高斯函数分布,根据该区域内带噪信号的累积能量变化,拟合得到相关高斯函数的参数,从而根据三倍标准差原则确定主频有效信息的分布范围,进而通过有效频段内的频域积分和傅立叶逆变换,得到相应的速度和位移信号。最后,通过数值模拟算例,考察有效频段法在多频简谐激励和随机激励下的积分效果,并与传统频域积分方法进行对比。结果表明,相对于传统频域积分方法,有效频段法可以实现积分频段的自动确定,能得到简谐激励下更高的积分精度和随机激励下稳定且良好的积分精度,抗噪性能更强。

Abstract

Here, aiming at the integration problem of noisy acceleration signals, a new frequency domain integration method based on frequency spectral energy morphological fitting was proposed. It was called the effective frequency band method. Assuming that the frequency spectral curve within a range near peak value main frequency satisfies Gaussian distribution, according to cumulative energy changes of a noisy acceleration signal within this range, the corresponding parameters of Gaussian distribution were fitted to determine the distribution range (the effective frequency band) of the main frequency effective information using the 3principle. Then the corresponding velocity and displacement signals were achieved through the frequency domain integration and the inverse Fourier transformation within the effective frequency band. Finally, through numerical simulation examples, the integration effect of the effective frequency band method was inspected under multi-frequency harmonic excitation and random excitation, respectively. The results were compared with those using the traditional frequency domain integration method. It was shown that compared to the traditional frequency domain integration method, the effective frequency band one can be used to realize integration frequency band’s automatic determination, obtain higher integration accuracy under harmonic excitation and stable and good integration accuracy under random excitation, and have a stronger anti-noise ability.

关键词

加速度积分 / 频域积分 / 形态拟合 / 有效频段

Key words

acceleration integration / frequency domain integration / morphological fitting / effective frequency band

引用本文

导出引用
陈太聪,张奇. 基于频谱能量形态拟合的加速度积分方法研究[J]. 振动与冲击, 2019, 38(13): 7-12
CHEN Taicong, ZHANG Qi. Acceleration integration method based on frequency spectral energy morphological fitting[J]. Journal of Vibration and Shock, 2019, 38(13): 7-12

参考文献

[1] Joseph M. Seismic performance and retrofit evaluation of reinforced concrete structures [J]. ACI Structural Journal, 1997, 123(1): 3-10.
[2] Lee K, Foutch D A. Performance evaluation of new steel frame buildings for seismic loads [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 653-670.
[3] Phani A S, Woodhouse J. Experimental identification of viscous damping in linear vibration [J]. Journal of Sound and Vibration, 2009, 319: 832-849.
[4] Pintelon R, Schoukens J. Real-time integration and differentiation of analog-signals by means of digital filtering [J]. IEEE Transactions on Instrument and Measurement, 1990, 39(6): 923-927.
[5] Brandt A. Noise and Vibration Analysis – Signal Analysis and Experimental Procedures [M]. New York: John Wiley & Sons, 2011.
[6] 陈为真, 汪秉文, 胡晓娅. 基于时域积分的加速度信号处理[J]. 华中科技大学学报(自然科学版), 2010, 38(1): 1-4.
CHEN Weizheng, WANG Bingwen, HU Xiaoya. Acceleration signal processing by aumerical integration [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2010, 38(1): 1-4.
[7] 顾名坤, 吕振华. 基于振动加速度测量的振动速度和位移信号识别方法探讨[J]. 机械科学与技术, 2011, 30(4): 522-526.
GU Mingkun, LU Zhenhua. Identification of a mechanism's vibration velocity and displacement based on the acceleration measurement [J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(4): 522-526.
[8] 缪惠全, 王闯, 李杰. 加速度基线漂移频域处理方法的对比研究[J]. 振动与冲击, 2016, 35(13): 66-71.
MIAO Huiquan, WANG Chuang, LI Jie. Frequency domain processing methods for acceleration integrations baseline drift [J]. Journal of Vibration and Shock, 2016, 35(13): 66-71.
[9] 胡玉梅, 周英杰, 朱浩, 等. 基于趋势项误差控制的频域积分算法研究与应用[J]. 振动与冲击, 2015, 34(2): 171-175.
HU Yumei, ZHOU Yingjie, ZHU Hao, et al. Integration algorithm based on trend-control of error in frequency domain [J]. Journal of Vibration and Shock, 2015, 34(2): 171-175.
[10] Brandt A, Brincker R. Integrating time signals in frequency domain - Comparison with time domain integration [J]. Measurement, 2014, 58: 511-519.
[11] 方新磊, 郝伟, 陈宏. 基于频域滤波的加速度信号处理[J]. 仪表技术与传感器, 2012, 4: 94-96.
FANG Xinlei, HAO Wei, CHEN Hong. Acceleration signal processing based on frequency domain filtering [J]. Instrument Technique and Sensor, 2012, 4: 94-96.
[12] 周英杰. 加速度测试积分位移算法及其应用研究[D]. 重庆:重庆大学, 2013.
ZHOU Yingjie. A Study on Integral Algorithm for Acceleration Test to get Displacement and Application [D]. Chongqing: Chongqing University, 2013.
[13] 李敏, 盛毅. 高斯拟合算法在光谱建模中的应用研究[J]. 光谱学与光谱分析, 2008, 28(10): 2352-2355.
LI Min, SHENG Yi. Study on application of Gaussian fitting algorithm to building model of spectral analysis [J]. Spectroscopy and Spectral Analysis, 2008, 28(10): 2352-2355.
[14] 李修文, 阳建宏, 黎敏, 徐金梧. 基于频域形态滤波的低速滚动轴承声发射信号降噪新方法[J]. 振动与冲击, 2013, 32(1): 65-68.
LI Xiuwen, YANG Jianhong, LI Min, XU Jinwu. A new de-noising method for acoustic emission signal of rolling bearings with low speed based on morphological filtering in frequency domain [J]. Journal of Vibration and Shock, 2013, 32(1): 65-68.
[15] 李德保, 陆秋海. 工程振动试验分析[M]. 北京: 清华大学出版社, 2004.
LI Debao, LU Qiuhai. Engineering Vibration Test Analysis [M]. Beiiingg: Tsinghua UniveIsity Press, 2004.
[16] Han S. Measuring displacement signal with an accelerometer [J]. Journal of Mechanical Science and Technology, 2010, 24(6): 1329-1335.
[17] 叶其孝, 沈永欢. 实用数学手册[M]. 北京: 科学出版社, 2006.
YE Qixiao, SHEN Yonghuan. Practical Mathematics Handbook [M]. Beijing: Science Press, 2006.
[18] Ang H-S A, Tang W H. Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering (2nd Edition) [M]. New York: John Wiley & Sons, 2007.

PDF(810 KB)

Accesses

Citation

Detail

段落导航
相关文章

/