输电塔减振的新型TMD开发与应用研究

雷旭1,谢文平1,聂铭1,牛华伟2,陈谨林2,王宇翔2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (13) : 73-80.

PDF(2331 KB)
PDF(2331 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (13) : 73-80.
论文

输电塔减振的新型TMD开发与应用研究

  • 雷旭1,谢文平1,聂铭1,牛华伟2,陈谨林2,王宇翔2
作者信息 +

Development and application of a new type of TMD in transmission tower vibration reduction

  • LEI Xu1, XIE Wenping1, NIE Ming1, NIU Huawei2, CHEN Jinlin2, WANG Yuxiang2
Author information +
文章历史 +

摘要

针对强风和断线冲击作用下高压输电塔易发生的较大幅度振动问题,本文开发了一种弹簧板式电涡流全向调质阻尼器(ECTMD)以减轻此类结构的风致振动和断线冲击效应。本文采用的ECTMD相比以往类似装置,其突出优点为使用非接触式的电涡流阻尼,构造简单且无内摩阻,微振动下即可启动,且非对称悬臂梁摆式构造使其具有全向抑振功能。运用数值模拟和气弹模型风洞试验对有无ECTMD时的某50m高输电塔振动响应进行了分析验证,计算和试验结果表明:本文开发的ECTMD沿各方向均有一定的减振效果,在质量比2%左右时,加速度减振率为18%~27%,位移减振率为10%~25%。因风作用下塔身1阶共振相比背景响应占比很小,故加装TMD装置对结构风振的抑制相对有限,但其能将结构阻尼值提高3倍左右,对于减小断线等冲击荷载效应会有较好效果。

Abstract

Aiming at high voltage transmission towers’ obvious vibration problems under strong wind and power line’s breakage impact, a spring plate type eddy-current tuned mass damper (ECTMD) was developed and applied to reduce their wind-induced vibration and power line’s breakage impact load effect on them. Compared to previous similar devices, it was shown that ECTMD’s outstanding advantage is using contactless eddy current damping, its structure is simple without internal frictional damping, and it can be started under micro-vibration; in addition, its asymmetric cantilever beam pendulum type structure makes itself has omnidirectional vibration suppression function. Adopting numerical simulation and aero-elastic model’s wind tunnel tests, vibration responses of a 50 m high transmission tower with and without ECTMD were analyzed and verified. Calculation and test results showed that this type ECTMD has a certain vibration reduction effect in all directions; with the mass ratio of about 2%, its vibration acceleration reduction ratio is 18%-27%, and its vibration displacement reduction rate is 10%-25%; due to the ratio of the tower’s first order resonance amplitude to background response one is very small, the suppressing effect of ECTMD on the tower’s wind induced vibration is relatively limited, while it can increase the structural damping by about 3 times, so it has a better effect to reduce power line’s breakage impact load effects on high voltage transmission towers.

关键词


输电塔
/ 振动控制 / 电涡流调谐质量阻尼器 / 数值模拟 / 风洞试验

Key words

  / power transmission tower;vibration control;eddy-current tunned mass damper;numerical simulation;wind tunnel test

引用本文

导出引用
雷旭1,谢文平1,聂铭1,牛华伟2,陈谨林2,王宇翔2. 输电塔减振的新型TMD开发与应用研究[J]. 振动与冲击, 2019, 38(13): 73-80
LEI Xu1, XIE Wenping1, NIE Ming1, NIU Huawei2, CHEN Jinlin2, WANG Yuxiang2. Development and application of a new type of TMD in transmission tower vibration reduction[J]. Journal of Vibration and Shock, 2019, 38(13): 73-80

参考文献

[1] 谢强, 李杰. 电力系统自然灾害的现状与对策[J]. 自然灾害学报, 2006, 15(04):126-131.
XIE Qiang,LI Jie. Current situation of natural disaster in electricPower system and counterm easures[J]. Journal of Natural Disasters, 2006, 15(04):126-131.
[2] 田利, 俞琪琦, 尹东, 等. 高压输电塔-线体系抗风雨的研究现状[J]. 工业建筑, 2014, 44(6):101-107.
TIAN Li, YU Qiqi, YIN Dong, et al. Stat of the art: wind-rain resistance of power transmission tower-line system[J].  Industrial Construction, 2014, 44(6):101-107.
[3] 沈国辉, 何运祥, 孙炳楠,等. 绝缘子断裂对大跨越输电线路的动力效应[J]. 浙江大学学报(工学版), 2008, 42(11):1990-1995.
SHEN Guohui, HE Yunxiang, SUN Bingnan, et al. Dynamic effect on long-span transmission line system due to insulator rupture[J]. Journal of Zhejiang Univ- ersity(Engineering Science), 2008, 42(11):1990-1995.
[4] 陈政清.工程结构的风致振动、稳定与控制[M].北京:科学出版社,2013:480-518.
CHEN Zhengqing. Wind induced vibration、stability and control of engineering structure [M].Beijing:Science Press,2013:480-518.
[5] 郑瑾, 陈波. 输电线路的风致振动被动耗能控制[J]. 武汉理工大学学报, 2007, 29(12):80-83.
ZHENG Jin, CHEN Bo. Wind-induced Vibration Control of Transmission Tower-line System by Using Passive Devices[J]. Journal of Wuhan Universuty of Technology, 2007, 29(12):80-83.
[6] 郭勇, 孙炳楠, 叶尹,等. 混合遗传算法在输电塔阻尼器优化布置中的应用[J]. 哈尔滨工业大学学报, 2009,41(10):259-264.
GUO Yong,SUN Bingnan,YE Yin, et al. Hybrid genetic algorithm for optimizing damper distribution of transmission Towers[J]. Journal of Harbin Institute of Technology, 2009,41(10):259-264.
[7] 华旭刚, 陈政清, 杨靖波,等. 特高压输电塔的抗风减振技术研究[C]//全国结构风工程学术会议. 杭州,中国:[s.n.],2009:285-295.
HUA Xugang, CHEN Zhengqing, YANG  Jingbo,et al. Study on anti wind damping technology of UHV transmission tower[C]// National Academic Conference on structural wind engineering. Hangzhou,China:[s.n.],2009:285-295.
[8] 杨靖波, 华旭刚, 陈政清,等. 约束阻尼层在输电塔风振控制中的应用[J]. 振动工程学报, 2010, 23(4):389-396.
YANG Jingbo, HUA Xugang, CHEN Zhengqing, et al. Constrained layer damping for vibration control of transmission steel towers under wind actions [J]. Journal o f Vibrat ion Engineering, 2010, 23(4):389-396.
[9] 钟万里, 吴灌伦, 王伟,等. 基于阻尼耗能原理的高压输电塔风振抑制方法[J]. 中南大学学报(自然科学版), 2013, 44(1):397-402.
ZHONG Wanli, WU Guanlun, WANG Wei, et al. Wind-induced vibration reduction technology of high-voltage transmission tower based on polymer damper [J]. Journal of Central South University (Science and Technology), 2013, 44(1):397-402.
 [10] Tian L, Rong K, Zhang P, et al. Vibration Control of a Power Transmission Tower with Pounding Tuned Mass Damper under Multi-Component Seismic Excitations[J]. Applied Sciences, 2017, 7(5): 477-490.
[11] BAE J S, HWANG J H, ROH J H, et al.Vibration Suppression of a Cantilever Beam Using Magnetically Tuned-mass-damper[J].Journal of Sound and Vibration, 2012,331(26):5669-5684.
[12] 张琪, 吕西林. 附加电涡流阻尼TMD的高层建筑结构振动台试验研究[J]. 结构工程师, 2017, 33(2):1-9.
ZHANG Qi, LU Xilin. Shaking Table Test on Ttall Building Using Eddy-current TMD[J]. Structure Engineers, 2017, 33(2):1-9.
[13] 雷旭, 牛华伟, 陈政清,等. 大跨度钢拱桥吊杆减振的新型电涡流TMD开发与应用[J]. 中国公路学报, 2015, 28(4):60-68.
LEI Xu, NIU Huawei, CHEN Zhengqing, et al. Development of a New-type Eddy Current TMD for Vibration Control of Hangers in Long-span Arch Bridges [J]. China Journal of Highway and Transport, 2015, 28(4):60-68.
[14] 黄智文. 电涡流阻尼器理论研究及其在桥梁竖向涡振控制中的应用[D]. 长沙:湖南大学, 2016:1-104.
HUANG Zhiwen. Theoretical Study of Eddy Current Damper and Its Application in Vertical Vortex-induced Vibration Control of Bridges[D]. Changsha: HunanUniversity, 2016:1-104.
[15] Wen Q, Hua X G, Chen Z Q, et al. Control of Human-Induced Vibrations of a Curved Cable-Stayed Bridge: Design, Implementation, and Field Validation[J]. Journal of Bridge Engineering, 2016, 21(7): 04016028.
[16] 汪志昊.自供电磁流变阻尼减振系统与永磁式电涡流TMD的研制及应用[D].长沙:湖南大学,2011:97-141.
WANG Zhihao. Developments and Applications of the Self-powered Magnetorheological Damper and TMDs Using Eddy Current Dam- pering[D]. Changsha: HunanUniversity,  2011:97-141.
[17] 陈政清, 田静莹, 黄智文,等. TMD等强度悬臂梁实际应用时的频率精确分析[J]. 建筑科学与工程学报, 2016, 33(4):1-6.
CHEN Zhengqing, TIAN Jingying, HUANG Zhiwen, et al. Exact Analysis of Natural Frequency of Equal Strength Cantilever Beams of TMD in Practical Cases [J]. Journal of Architecture and Civil Engineering, 2016, 33(4):1-6.
[18] William H. Hayt, Jr., John A. Buck, 海特, 巴克,等. 工程电磁场[M]. 清华大学出版社, 2014:1-593.
William H. Hayt, Jr., John A. Buck, et al. Engineering Electromagnetics[M]. Beijing:Tsinghua University Press, 2014:1-593.

PDF(2331 KB)

555

Accesses

0

Citation

Detail

段落导航
相关文章

/