粘结层对陶瓷/金属复合装甲抗弹性能的影响研究

高玉波 1, 张伟 2,宜晨虹 3,汤铁钢 3

振动与冲击 ›› 2019, Vol. 38 ›› Issue (13) : 95-101.

PDF(2264 KB)
PDF(2264 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (13) : 95-101.
论文

粘结层对陶瓷/金属复合装甲抗弹性能的影响研究

  • 高玉波 1, 张伟 2,宜晨虹 3,汤铁钢 3
作者信息 +

Effects of adhesive layer on anti-penetration performance of ceramic/metal composite armour

  • GAO Yubo 1 ,  ZHANG Wei 2 , YI Chenhong 3, TANG Tiegang 3
Author information +
文章历史 +

摘要

采用二级轻气炮加载装置和AUTODYN软件对含环氧树脂粘结层的陶瓷/金属复合装甲的抗弹性能展开了研究。陶瓷面板分为叠层和单层板两种形式,对应于C/E/A(Ceramic/Epoxy resin/Aluminum alloy)和C/E/C/E/A(Ceramic/Epoxy resin/ Ceramic/Epoxy resin/Aluminum alloy)复合装甲。结果表明,受应力波传播和破碎锥作用,C/E/C/E/A装甲较C/E/A装甲的陶瓷面板破碎程度更大。具有缓冲作用的粘结层,随其厚度的增加,陶瓷损伤程度逐渐减小,背板侵深也逐渐减小。对Yaziv系数的修订表明,在相同弹速和粘结层厚度条件下,相同面密度的叠层陶瓷装甲抗弹性能优于单层陶瓷装甲。但是,粘结层厚度的增加对C/E/C/E/A装甲的抗弹性能贡献不大,而对C/E/A复合装甲的影响却较大。最后,对于两种形式陶瓷复合装甲,粘结层均使得装甲内透射应力波幅值得到了有效衰减,尤其是C/E/C/E/A装甲。

Abstract

Here, the two-stage light gas gun equipment and the software AUTODYN were used to analyze the anti-penetration performance of ceramic/metal composite armor with epoxy resin adhesive layer. Ceramic plate has two forms including single layer form and laminated one corresponding to C/E/A (Ceramic/Epoxy resin/Aluminum alloy) armor and C/E/C/E/A (Ceramic/Epoxy resin/ Ceramic/Epoxy resin/Aluminum alloy) one. Results showed that under actions of stress wave and broken cone, crushing degree of ceramic plate in form of C/E/C/E/A armor is larger than that in form of C/E/A armor; with increase in thickness of adhesive layer possessing buffer effect, damage degree of ceramic and penetrated depth of metal plate gradually decrease. The Yaziv coefficient was revised here, it was shown that under conditions of the same velocity of anti-armor piercing projectile and adhesive layer thickness, anti-penetration performance of C/E/C/E/A armor is superior to that of C/E/A one, two armors have the same surface mass density; contribution of increase in adhesive layer thickness to anti-penetration performance of the former is not large, while that to anti-penetration performance of the latter is larger; for the two ceramic armors, adhesive layer makes penetrated stress wave amplitudes be attenuated effectively, especially, for C/E/C/E/A one.

关键词

陶瓷/金属复合装甲 / 粘结层 / 抗弹效益 / 应力波

Key words

ceramic/metal composites armor / adhesive layer / ballistic effectiveness / stress wave

引用本文

导出引用
高玉波 1, 张伟 2,宜晨虹 3,汤铁钢 3. 粘结层对陶瓷/金属复合装甲抗弹性能的影响研究[J]. 振动与冲击, 2019, 38(13): 95-101
GAO Yubo 1,ZHANG Wei 2,YI Chenhong 3, TANG Tiegang 3. Effects of adhesive layer on anti-penetration performance of ceramic/metal composite armour[J]. Journal of Vibration and Shock, 2019, 38(13): 95-101

参考文献

[1]  殷文骏, 程怡豪, 宋春明, 等. 弹体高速侵彻陶瓷复合厚靶的计算模型研究[J]. 振动与冲击, 2017, 36(1): 223-229.
YIN Wenjun, CHENG Yihao, SONG Chunming, et al. Calculation Model for a High-velocity Projectile Penetrating a Ceramic-composite Target [J]. Journal of Vibration and Shock, 2017, 36(1): 223-229.
[2]  翟阳修, 吴昊, 方秦. 基于A-T模型的长杆弹超高速侵彻陶瓷靶体强度分析[J]. 振动与冲击, 2017, 36(3):183-188.
ZHAI Yangxiu, WU Hao, FANG Qin. Strength Analysis of Ceramic Targets Against Hypervelocity Penetration of Long-rod Projectiles Based on A-T model [J]. Journal of Vibration and Shock, 2017, 36(3):183-188.
[3]  Prakash A, Rajasankar J, Anandavalli N, et al. Influence of adhesive thickness on high velocity impact performance of ceramic/metal composite targets [J]. International Journal of Adhesion and Adhesives, 2013, 41: 186-197.
[4]  Übeyli M, Yıldırım R O, Ögel B. Investigation on the ballistic behavior of Al2O3/Al2024 laminated composites [J]. Journal of Materials Processing Technology, 2008, 196: 356-364.
[5]  何煌, 张明, 曾首义. 连结状况对陶瓷复合装甲抗弹性能的影响[J]. 兵工自动化, 2006, 25(12): 35-37.
HE Huang, ZHANG Ming, ZENG Shou-yi. Effect of target inosculation condition on the anti-penetration property of ceramic composite armour [J]. Ordnance industry audomation, 2006, 25(12): 35-37.
[6]  López-Puente J, Arias A, Zaera R, et al. The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study [J]. International Journal of Impact Engineering, 2005, 32: 321-336.
[7]  Grujicic M, Pandurangan B, d’Entremont B. The role of adhesive in the ballistic/structural performance of ceramic/polymer–matrix composite hybrid armor [J]. Materials & Design, 2012, 41:380-393.
[8]  Ji G, Ouyang Z, Li G, et al. Effects of adhesive thickness on global and local Mode-I interfacial fracture of bonded joints [J]. International Journal of Solids and Structures, 2010, 47 (18-19): 2445-2458.
[9] Signetti S, Pugno N M. Evidence of optimal interfaces in bio-inspired ceramic-composite panels for superior ballistic protection [J]. Journal of the European Ceramic Society, 2014, 34(11): 2823-2831.
[10] Zaera R, Sánchez-Sáez S, Pérez-Castellanos J L, et al. Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact [J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(8): 823-833.
[11] Huang C Y, Chen Y L. Design and impact resistant analysis of functionally graded Al2O3–ZrO2 ceramic composite [J].  Materials & Design, 2016, 91: 294-305.
[12] 高玉波, 张伟, 李达诚, 等. 基于反向传播神经网络的陶瓷损伤参数反演分析[J]. 兵工学报, 2018, 39(1): 146-152.
GAO Yu-bo, ZHANG Wei, LI Da-cheng, et al. Reversion Analysis of Ceramic Damage Based on Back Propagation Neural Network [J]. Acta Armamentarii, 2018, 39(1): 146-152.
[13] Westerling L, Lundberg P, Lundberg B. Tungsten long-rod penetration into confined cylinders of boron carbide at and above ordnance velocities [J]. International Journal of Impact Engineering, 2001, 25(7): 703-714.
[14] Meyers M A. Dynamic behavior of materials [M]. University of California, San Diego, USA: John Wiley & Sons Inc, 1994.
[15] Jinzhu L, Liansheng Z, Fenglei H. Experiments and simulations of tungsten alloy rods penetrating into alumina ceramic/603 armor steel composite targets [J]. International Journal of Impact Engineering, 2017, 101: 1-8.
[16] Rozenberg Z, Yeshurun Y. The relation between ballastic efficiency and compressive strength of ceramic tiles [J]. International Journal of Impact Engineering. 1988, 7(3): 357-362.
[17] Gao Y, Tang T, Yi C H, Zhang W, Li D, Xie W, Huang W, Ye N. Study of static and dynamic behavior of TiB2–B4C composite [J].  Materials & Design. 2016, 92: 814-822.

PDF(2264 KB)

356

Accesses

0

Citation

Detail

段落导航
相关文章

/