驱动刚度非线性的存在会导致幅频曲线出现典型的非线性硬化特性,从而影响双检测微陀螺检测输出信号和灵敏度的稳定性。为对比线性刚度和非线性刚度对微陀螺检测输出的影响规律,首先求解线性刚度下系统的稳态响应,其次采用多尺度法求解非线性动力学方程的近似周期解,并考虑科氏力对检测输出的影响,在此基础上探讨驱动刚度立方非线性对双检测微陀螺系统主共振的幅频曲线、共振频率、灵敏度的影响规律。研究发现:驱动模态共振频率与刚度非线性及振动峰值密切相关;刚度非线性越强,固有频率的漂移量对振幅的变化就越敏感。较弱的驱动刚度非线性就会导致检测一和二在驱动模态频率处的幅值大幅下降,由此对微陀螺的输出信号产生极大影响,降低了微陀螺检测信号的稳定性,并与基于线性设计的灵敏度值产生极大的偏差。
Abstract
The existence of stiffness nonlinearity leads to the typical nonlinear hardening characteristic of the amplitude-frequency curve, which affects the stability of double sense-mode micro gyroscope’s output signals and its sensitivity.To compare the influences of linear and nonlinear stiffnesses on gyroscope’s output signals, the steady-state response of the system with linear stiffness was solved firstly.Next, the multi-scale method was used to get the approximate periodic solution of the nonlinear dynamic equation, and the influence of Coriolis force on the outputs was considered.On this basis, the influence of driving cubic stiffness nonlinearity on the amplitude-frequency curve, resonance frequency and sensitivity under primary resonance was discussed.The results show that the driving mode resonance frequency is closely related to the stiffness nonlinearity and peak value of vibration, and the stronger stiffness nonlinearity is, the more sensitive variation of resonance frequency’s drift to the amplitude is.The weak driving stiffness nonlinearity could result in a significant decrease in two sense-mode’s amplitudes at driving mode frequency.Thus, the output signal of the gyroscope is greatly affected, which reduces the stability of the gyroscope’s detection signal and produces a great deviation from the sensitivity value based on linear design.
关键词
双检测微陀螺 /
多尺度法 /
科氏力 /
驱动刚度立方非线性 /
灵敏度
{{custom_keyword}} /
Key words
double sense-mode micro gyroscope /
multi-scale method /
Coriolis force /
drive stiffness cubic nonlinearity /
sensitivity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘危,解旭辉,李圣怡. 微机械惯性传感器的技术现状及展望[J]. 光学精密工程,2003, 11(5): 425-431.
LIU Wei, Xie Xuhui, Li Shengyi. Present state and perspectives of micromachined inertial sensors [J]. Optics and Precision Engineering, 2003, 11(5): 425-431.
[2] 朱二辉,韩光平,刘凯. 微机械陀螺的动力学特性研究[J]. 机械强度, 2007, 29(2): 228-232.
ZHU Erhui, HAN Guangping, LIU Kai. Micro-mechanical gyroscope dynamic characteristics [J]. Journal of Mechanical Strength, 2007, 29(2): 228-232.
[3] 马贺冲,张琪昌,陈涛. 考虑边缘效应的MEMS梳齿谐振器的静动力学特性分析[J]. 振动与冲击,2018, 37(13): 11-.
MA Hechong, ZHANG Qichang, CHEN Tao. Static and dynamic characteristics analysis considering fringe effect for MEMS comb resonator [J]. Journal of Vibration and Shock, 2018, 37(13): 11-.
[4] 胡广深,陆泽琦,陈立群. 非线性阻尼非线性刚度隔振系统参数识别[J]. 振动与冲击,2018, 37(9): 68-73.
HU Guangshen, LU Zeqi, CHEN Liqun. Parameter estimation of a vibration isolation system which has both stiffness and damping nonlinearity [J]. Journal of Vibration and Shock, 2018, 37(9): 68-73.
[5] 陶志军. 微静电开关的非线性动力学[D]. 天津:天津大学, 2004.
TAO Zhijun. Nonlinear dynamics of a microstatic switch[D]. Tianjin: Tianjin University, 2004.
[6] 文永蓬,尚慧琳. 微陀螺动力学建模与非线性分析[J]. 振动与冲击,2015, 34(4): 70-73.
WEN Yongpeng, SHANG Huilin. Micro gyroscope dynamics modeling and nonlinear analysis [J]. Journal of Vibration and Shock, 2015, 34(4): 70-73.
[7] SIEWE M, USAMA H H. Homoclinic bifurcation and chaos control in MEMS resonators [J]. Applied Mathematical Modelling, 2011, 35(12): 5533-5552.
[8] EHSAN M M. Chaos prediction in MEMS NEMS resonators [J]. International Journal of Engineering Science, 2014, 82(3):74-83.
[9] NAN C T, CHUNG Y S. Stability and resonance of micro-machined gyroscope under nonlinearity effects [J]. Nonlinear Dynamics, 2009, 56(4): 369-379.
[10] Braghin F, Resta F, Leo E. Nonlinear dynamics of vibrating MEMS [J]. Sensors and Actuators A, 2007, 134(1):98-108.
[11] 朱奎宝,杨拥军,李博. 一种新型三自由度谐振式MEMS陀螺[J]. MEMS器件与技术,2009, 46(12): 730-734.
ZHU Kuibao, YANG Yongjun, LI Bo. A New Three-Degree-of-Freedom Resonant MEMS Gyroscope [J]. MEMS Devices and Technology, 2009, 46(12): 730-734.
[12] WANG Wei, LV Xiaoyong, SUN Feng. Design of Micromachined Vibratory Gyroscope With Two Degree-of-Freedom Drive-Mode and Sense-Mode[J]. IEEE Sensors Journal, 2012, 12(7):2460-2464.
[13] 王浩,陈伟平. 双解耦双自由度微机械陀螺的设计与仿真[D]. 哈尔滨:哈尔滨工业大学,2007.
WANG Hao, CHEN Weiping. Design and simulation of double decoupled two-degree-of-freedom micromechanical gyroscope [D]. Harbin: Harbin Institute of Technology, 2007.
[14] ESMAEILI A, KUPAEI M A. An adaptable broadband MEMS vibratory gyroscope by simultaneous optimization of robustness and sensitivity parameters [J]. Sensors and Actuators A Physical, 2014, 206 (3): 132-137.
[15] 尚慧琳,张涛,文永蓬. 参数激励驱动微陀螺系统的非线性振动特性研究[J]. 振动与冲击,2017, 36(1): 102-107.
SHANG Huilin, ZHANG Tao, WEN Yongpeng. Nonlinear vibration analysis of a micro-gyroscope system actuated by a parametric excitation [J]. Journal of Vibration and Shock, 2017, 36(1): 102-107.
[16] 胡海岩. 应用非线性动力学[M]. 北京:航空工业出版社, 2000.
HU Haiyan. Application of nonlinear dynamics [M]. Beijing: Aviation Industry Press, 2000.
[17] 王洪礼,张琪昌. 非线性动力学理论及应用[M]. 天津: 天津科学技术出版社,,2002.
WANG Hongli, ZHANG Qichang. Nonlinear dynamics theory and application [M]. Tianjin: Tianjin Science and Technology Press, 2002.
[18] 高嵘. 计入空气阻尼的MEMS微谐振器非线性动力学研究[J]. 传感器学报,2006, 19(5): 1355-1357.
GAO Rong. Study on Nonlinear Dynamics of MEMS Microresonator Considering Air Damping [J]. Chinese Journal of Sensors and Actuators, 2006, 19 (5): 1355-1357.
[19] ACAR C, SHKEL A. Nonresonant micromachined gyroscopes with structural mode-decoupling [J]. IEEE Sensors Journal, 2008, 3(4): 497-506.
[20] JEON S H, LEE J Y, JUNG H K. Two-mass system with wide bandwidth for SiOG (silicon on glass) vibratory gyroscopes [C]// The 13th International Conference on Solid-State Sensors. Seoul:IEEE,2005.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}