现有的缓冲包装五步法局限于对长方体结构进行面积与厚度进行设计计算,梯形结构设计不能运用此方法。为研究梯形结构的动态压缩响应规律及对设计提供依据,对发泡聚乙烯梯形结构进行了一系列的试验与理论分析。基于ABAQUS中的低密度泡沫本构建立二维有限元模型;然后在发泡聚乙烯一维动态本构关系基础上,利用虚拟质量法对梯形发泡聚乙烯结构动态压缩响应进行分析。数值模拟结果表明:二维有限元模型能精确获取任何梯形泡沫结构的力学行为与变现模式。当利用虚拟质量方法分析梯度结构的力学响应,随着梯形泡沫的锥度增加,分析误差也随之变大,这是由于梯形泡沫结构不均匀变形造成的,因此,虚拟质量法仅在求解锥度较小的泡沫结构的动态响应有较高的精度。
中图分类号:TB485 O322
Abstract
The existing five-step method of cushioning packaging is limited to the design and calculation of the area and thickness of cuboid structure, but this method can not be used in trapezoidal structure design.In order to study the dynamic compression response of trapezoidal structure and provide the basis for design, a series of experiments and theoretical analysis were carried out on the trapezoidal structure of expanded polyethylene.Based on the low density foam constitutive model in ABAQUS, a two-dimensional finite element model was established.Then, on the basis of one-dimensional dynamic constitutive relation of expanded polyethylene, the dynamic compression response of trapezoidal expanded polyethylene structure was analyzed by virtual mass method.The numerical simulation results showed that the two-dimensional finite element model can accurately obtain the mechanical behavior and deformation mode of any trapezoidal foam structure.When the virtual mass method is used to analyze the mechanical response of gradient structure, the analysis error increases with the increase of taper of trapezoidal foam, which is caused by the uneven deformation of trapezoidal foam structure.So the virtual mass method has high accuracy in solving the dynamic response of foam structures only with small taper.
关键词
梯形结构 /
发泡聚乙烯 /
低密度泡沫 /
有限元 /
虚拟质量
{{custom_keyword}} /
Key words
trapezoidal structure;expanded polyethylene /
low density foam /
finite element model /
virtual mass
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Singh J, Ignatova L, Olsen E, et al. Evaluation of stress–energy methodology to predict transmitted shock through expanded foam cushion[J]. Journal of Testing and Evaluation ,2010,38(6): 1–7.
[2] Navarro-Javierre P, De-La-Cruz-Navarro E. Evaluation of two simplified methods for determining cushion curves of closed cell foams[J]. Packaging Technology & Science, 2012, 25(4):217–231.
[3] Sek M, Minett M, Rouillard V, et al. A new method for determination of cushion curves[J]. Packaging Technology & Science, 2000, 13(6): 249–255
[4] Li G, Rouillard V, Sek M A. Evaluation of static and dynamic cushioning properties of polyethylene foam for determining its cushion curves[J]. Packaging Technology & Science, 2015, 28(1):47-57.
[5] Piatkowski T , Osowski P. Modified method for dynamic stress‐strain curve determination of closed‐cell foams[J]. Packaging Technology & Science , 2016 , 29 (6) :337-349.
[6] Mcgee S D, Batt G S, Gibert J M, et al. Predicting the effect of temperature on the shock absorption properties of polyethylene foam[J]. Packaging Technology & Science, 2017, 30(8):477-494.
[7] Mills N J, Masso-Moreu Y. Finite element analysis (FEA) applied to polyethylene foam cushions in package drop tests[J]. Packaging Technology & Science, 2005, 18(1):29–38.
[8] Hammou A D, Duong P T M, Abbès B, et al. Finite-element simulation with a homogenization model and, experimental study of free drop tests of corrugated cardboard packaging[J]. Mechanics & Industry, 2012, 13(3):175-184.
[9] Ge C, Huang H Q. Corner foam versus flat foam: an experimental comparison on cushion performance[J]. Packaging Technology & Science, 2015,28(3):217-225.
[10] Lu F D,TaoW M,Gao D.Virtual mass method for solution of dynamic response of composite cushion packaging system[J]. Packaging Technology & Science,2013,26(S1):32-42.
[11] Masso-Moreu Y, Mills N J. Impact compression of polystyrene foam pyramids[J]. International Journal of Impact Engineering, 2003, 28(6):653-676.
[12] 卢富德,陶伟明,周建伟, 高德,王炳涛. 头部-聚苯乙烯泡沫-铝蜂窝缓冲系统冲击响应与优化设计[J]. 振动工程学报,2016,29(5):900-904.
Lu F D,Tao W M,Zhou JW, et al.Impact responses and optimization design for a head-EPS-Aluminum honeycomb cushioning system[J]. Journal of Vibration Engineering, 2016,29(5):900-904.
[13] Ozturk U E, Anlas G. Finite element analysis of expanded polystyrene foam under multiple compressive loading and unloading[J]. Materials & Design, 2011, 32(2):773-780.
[14] Cronin D S,Ouellet S. Low density polyethylene, expanded polystyrene and expanded polypropylene: Strain rate and size effects on mechanical properties[J].Polymer Testing , 2016 , 53(1) :40-50.
[15] 卢富德,高德.功能梯度泡沫动力学响应分析[J]. 振动与冲击,2014,33(15):54-57.
LU Fu-de,GAO De. Dynamic response of a functionally graded foam structur[J].Journal of Vibration and Shock, 2014,33(15):54-57
[16] Batt B G S, Gibert J M, Daqaq M. Primary Resonance behaviour of a nonlinear, viscoelastic model of expanded polymer cushion material[J]. Packaging Technology & Science , 2015, 28(8):694-709.
[17] 卢富德,陶伟明,高德.具有简支梁式易损部件的产品包装系统跌落冲击研究[J].振动与冲击,2012 ,31 (15): 79- 81.
Lu Fu-de,Tao Wei-ming,Gao De.Drop imact analysis on item packaging system with beam type elastic critical component[J]. Journal of Vibration and Shock, 2012 ,31 (15): 79- 81.
[18] 张 炜, 薛 飞,卢富德,等. 考虑易损件物品-EPE缓冲系统冲击响应分析[J]. 振动与冲击, 2015, 34(9): 116-119
Zhang W, XUE F,LU F D,etal.Impact-response analysis of the system composed of critical component and EPE cushion[J]. Journal of Vibration and Shock, 2015,34 (9): 116-119.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}